

VIS À BILLES

& accessoires

VIS À BILLES

Vis à billes & accessoires

Les vis à billes sont constituées d'une vis, d'un écrou dans lequel sont intégrées les billes, et du système de recirculation des billes. Les vis à billes sont les vis filetées utilisées le plus souvent dans les machines industrielles et de précision. Elles permettent de transformer une rotation en un déplacement longitudinal ou inversement. Elles se distinguent donc par leur précision et leur rendement élevés. HIWIN propose une vaste sélection de vis à billes, adaptées pour votre application.

Les vis à billes HIWIN se distinguent par leur déplacement précis et sans frottement, nécessitent un couple d'entraînement peu élevé et garantissent une rigidité élevé et un déplacement discret. Les vis à billes HIWIN sont disponibles en version roulée, tourbillonnée et rectifiée. Le produit optimal pour tous les cas d'application.

TÉLÉCHARGEMENTS ET APPLICATIONS

Instructions de montage

Outil de conception

Configurateur CAO

Table des matières

Table des matières

1.	Aperçu des produits	
2.	Informations générales	}
2.1	Propriétés	{
3.	Propriétés constructives et sélection des vis à billes HIWIN	10
3.1	Consignes de construction	10
3.2	Procédure de sélection d'une vis à bille	12
3.3	Arbres de vis à billes	13
3.4	Systèmes de recirculation des billes	13
3.5	Variantes de déflecteurs	14
3.6	Précision des vis à billes HIWIN	15
3.7	Précharge et jeu	22
3.8	Calculs	25
3.9	Matériau et traitement thermique	33
3.10	Lubrification	33
4.	Vis à billes roulées	32
4.1	Propriétés	34
4.2	Classes de tolérance	34
4.3	Code de commande HIWIN pour vis à billes roulées	38
4.4	Écrous pour vis à billes roulées	30
5.	Vis à billes tourbillonnées	39
5.1	Propriétés	39
5.2	Classes de tolérance	39
5.3	Code de commande HIWIN pour vis à billes tourbillonnées	40
5.4	Écrous pour vis à billes tourbillonnées	47
6.	Vis à billes rectifiées	
6.1	Propriétés	48
6.2	Classes de tolérance	48
6.3	Code de commande HIWIN pour vis à billes rectifiées	49
6.4	Écrous pour vis à billes rectifiées	50
7.	Vis à billes pour exigences spéciales	
7.1	Unité à écrou entraînable AME	60
7.2	Vis à billes pour fonctionnement avec charges lourdes	61
8.	Portées et accessoires	62
8.1	Portées et configuration de palier	62
8.2	Série de paliers WBK	66
8.3	Séries de paliers SFA/SLA	68
8.4	Boîtier pour brides-écrous (DIN 69051 Partie 5)	71
8.5	Séries de paliers EK/EF	77
8.6	Séries de paliers BK/BF	74
8.7	Séries de paliers FK/FF	76
8.8	Écrous à encoches HIR – serrage radial	79
8.9	Écrous à encoches HIA – serrage axial	80

Aperçu des produits

1. Aperçu des produits

Vis à billes roulées

Page 34

- Brides-écrous et écrous cylindriques
- Réduction possible du jeu axial
- Diamètre nominal 8 63 mm
- Traitements finaux standardisés

Vis à billes tourbillonnées

<u>Page 39</u>

- Brides-écrous et écrous cylindriques
- Écrous simples et doubles
- Diamètre nominal 16 80 mm
- Traitements finaux standardisés
- Écrous de sécurité

Vis à billes rectifiées

Page 48

- Brides-écrous et écrous cylindriques
- Écrous simples et doubles
- Diamètre nominal 6 100 mm
- Préserré ou jeu axial minimal

Vis à billes pour applications spéciales

Page 60

- Unités à écrou entraînables
- Vis à billes pour charges lourdes

Portées et accessoires

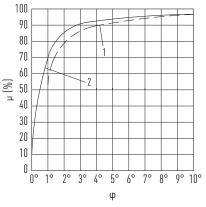
<u>Page 62</u>

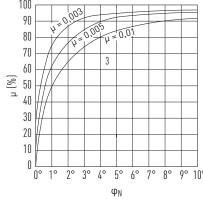
- Traitements finaux standard
- Paliers de vis standard
- Enveloppe de l'écrou

2. Informations générales

2.1 Propriétés

L'utilisation de vis à billes HIWIN offre de nombreux avantages, notamment un rendement élevé, une liberté de jeu axial, une grande rigidité, une précision de pas élevée et bien d'autres encore. Les propriétés caractéristiques et les avantages des vis à billes HIWIN sont décrits en détails dans ce qui suit.


2.1.1 Efficacité élevée dans les deux sens


Grâce au contact de roulement entre la vis et l'écrou, les vis à billes peuvent obtenir jusqu'à 90 % de rendement.

La finition de surface spéciale des gorges de roulement dans les vis à billes HIWIN réduit la résistance de frottement entre la bille et le chemin de roulement.

Grâce à ce niveau de rendement élevé, seul un faible couple d'entraînement est nécessaire pour le mouvement de roulement des billes. La réduction de la puissance moteur nécessaire ainsi obtenue entraîne également une réduction des coûts d'exploitation.

- 1 Mouvement linéaire à rotatif
- 2 Vis à bille Mouvement rotatif à linéaire
- 3 Vis à bille
- μ Efficacité [%]
- $\phi_{\text{N}} \quad \text{ Angle d'inclinaison mode normal [°]}$
- φ_U Angle d'inclinaison mode inversé [°]

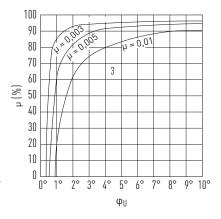
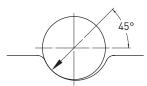
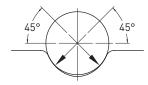




Fig. 2.1 Rendement mécanique des vis filetées

2.1.2 Absence de jeu et rigidité élevée

Le profilé à arc ogival utilisé par HIWIN pour les arbres et les écrous de vis à billes permet un montage sans jeu axial de l'écrou de vis à billes. Pour une bonne rigidité générale et une répétabilité élevée, on utilise généralement une précharge.

Profilé arc arrondi

Profilé arc ogival (profilé gothique)

Fig. 2.2 Types de contacts habituels dans les vis à billes (profilé à arc arrondi, profilé à arc ogival)

2.1.3 Grande précision de pas

Pour les applications qui nécessitent une précision optimale, notre fabrication est conforme aux normes DIN ISO et JIS; nous pouvons également adapter notre fabrication aux exigences du client.

La précision est garantie par un contrôle au moyen de notre mesure de système laser et documentée pour le client.

2.1.4 Durée de vie fiable

Tandis qu'avec les vis filetées traditionnelles, la durée d'utilisation est déterminée par l'usure des surfaces de contact, les vis à billes HIWIN peuvent être utilisées sur toute la durée de vie du métal. Grâce à un soin particulier accordé au développement, à la sélection des matériaux, au traitement à chaud et à la fabrication, les vis à billes HIWIN ont prouvé leur fiabilité et leur résistance pendant leur durée de vie nominale. La durée d'utilisation dépend, pour tout type de vis à billes, de différents facteurs, et

notamment des aspects de construction, de la qualité de matériau, de la maintenance et de la capacité de charge dynamique comme facteur principal $\{C_{dyn}\}$. La précision du profilé, les propriétés du matériau et la dureté de la surface sont les facteurs fondamentaux qui influencent la capacité de charge dynamique.

2.1.5 Couple de démarrage réduit avec fonctionnement silencieux

Le frottement par roulement des billes dans les vis à billes ne requiert qu'un couple de démarrage réduit. Pour obtenir des gorges de roulement précises, HIWIN utilise un type de construction spécial (facteur d'adaptation) et des méthodes de production spécifiques. Le fabricant garantit ainsi que le couple d'entraînement du moteur se situe dans la plage nécessaire.

Chez HIWIN, au cours d'une étape spécifique de la fabrication, chaque gorge de roulement peut être examinée par rapport à son profilé. Un exemple de rapport de ce contrôle figure à la <u>Fig. 2.3</u>.

À l'aide d'installations de mesure informatiques, HIWIN établit et confirme avec une grande précision le couple de frottement de chaque vis à bille. Fig. 2.4 montre une courbe de couple typique sur la distance.

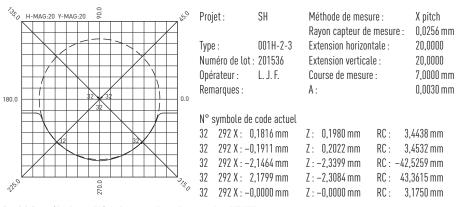


Fig. 2.3 Contrôle du profilé de la gorge de roulement chez HIWIN

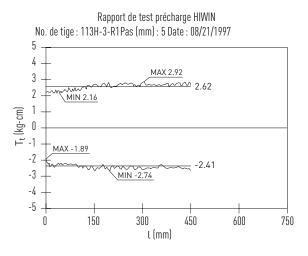


Fig. 2.4 Contrôle de la précharge chez HIWIN

2.1.6 Solutions spéciales

HIWIN fabrique des vis à billes selon les indications du client ou avec un traitement final standard HIWIN. Pour la définition de la vis à bille, les exigences doivent être documentées sur la fiche de planification et contrôlées. Cela garantit une adaptation optimale de la vis à bille aux exigences données.

- L Distance [mm]
- T_C Couple de marche à vide [kg-cm]

3. Propriétés constructives et sélection des vis à billes HIWIN

3.1 Consignes de construction

a) Sélectionnez une vis à bille adaptée à votre application (voir <u>Tableau 3.6</u>). Lors du montage, les différentes exigences doivent être prises en compte. Pour les vis à billes rectifiées avec précision utilisées sur des machines CNC, cela signifie une orientation soigneuse et un type de montage adapté; pour les applications qui nécessitent moins de précision, HIWIN recommande des vis à billes roulées, qui nécessitent moins d'efforts en termes de conception du type de montage et de stockage.

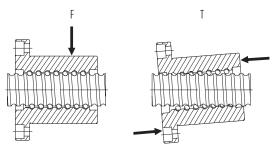


Fig. 3.1 **Répartition irrégulière des charges** occasionnée par une orientation insuffisante du palier de support et de l'écrou de vis à billes, mauvaise conception de la surface de montage, angle erroné ou erreur d'orientation de la bride d'écrou

b) Il est particulièrement important que le boîtier du palier et l'écrou de vis à billes soient montés parallèlement à l'axe, faute de quoi les charges seront réparties de manière irrégulière. Parmi les facteurs qui occasionnent une répartition irrégulière des charges, on compte également les charges radiales et les charges de couple (voir <u>Fig. 3.1</u>). Cela peut entraîner des perturbations du fonctionnement et réduire la

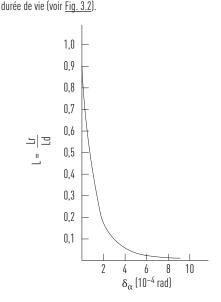


Fig. 3.2 **Conséquences sur la durée de vie** de la charge radiale suite à une orientation erronée

c) Sélectionnez le type de palier adapté à votre arbre de vis à billes. Pour une utilisation dans des machines CNC, HIWIN recommande des roulements à billes obliques (angle = 60°), en raison de leur plus grande capacité de charge axiale et parce qu'ils permettent un montage sans jeu ou avec précharge. Une sélection des traitements finaux possibles et les paliers libres et fixes adaptés figurent au chapitre <u>8</u>.

- F Charge radiale
- T Couple

Écrou de vis à billes - FSWXB2

Données techniques :

Diamètre de la vis : 40 mm

Pas : 10 mm

Diamètre de la bille : 6,35 mm Jeu radial : 0,05 mm

Conditions:

Force axiale Fa : 3000 N Décalage radial : 0 mm

- L Coefficient de durée de vie
- Lr durée de vie réelle
- Ld durée de vie souhaitée
- δα Variation d'angle écrou vis due à une erreur de montage

d) Des mesures doivent être prises afin d'empêcher les écrous de vis à billes de dépasser la course utile (voir <u>Fig. 3.3</u>). Un déplacement contre une butée fixe axiale cause des dommages.

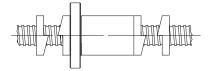


Fig. 3.3 Butée mécanique qui empêche le dépassement du déplacement

e) Dans des environnements chargés en poussière ou particules métalliques, les vis à billes doivent être équipées d'une protection vis télescopique ou à soufflet (voir <u>Fig. 3.4</u>).

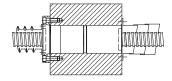


Fig. 3.4 Protection de vis télescopique ou à soufflet

f) En cas d'utilisation d'un système de recirculation des billes interne ou à embouts, le filetage doit être coupé jusqu'au bout de la vis. Le diamètre du tourillon de palier adjacent doit donc être inférieur de 0,5 à 1,0 mm au diamètre central des gorges de roulement d_r (voir <u>Fig. 3.5</u>).

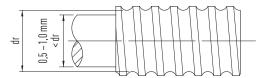


Fig. 3.5 Exigence spéciale posée au tourillon de palier du système de recirculation des billes interne

g) Pendant le durcissement de la surface de la vis, 2 à 3 spires de filetage sont laissées sans durcissement aux deux extrémités adjacentes aux paliers, afin de permettre des modifications de raccordement. Ces zones sont marquées par le symbole dans les plans HIWIN (voir <u>Fig. 3.6</u>). Veuillez prendre contact avec HIWIN si vous avez des exigences spécifiques concernant ces zones.

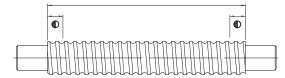


Fig. 3.6 Zone de durcissement de surface d'un arbre de vis à billes

h) Une précharge excessive augmente le couple de frottement, ce qui augmente le réchauffement et réduit la durée de vie. D'autre part, une précharge insuffisante réduit la rigidité et augmente le risque de jeu. Plus d'informations à ce sujet figurent aux sections 3.7 et 3.8.7.

Propriétés et sélection

$3.2\ Procédure\ de\ sélection\ d'une\ vis\ à\ bille$

<u>Tableau 3.1</u> indique la procédure à suivre lors de la sélection d'une vis à bille. À l'aide des exigences d'utilisation (A), les paramètres nécessaires de la vis à bille (B) peuvent être déterminés. La vis à bille adaptée à l'application peut donc être sélectionnée étape par étape en se basant sur les consignes (C).

Tableau 3	1 Procédure de sélection d'une vis à bille		
Étape	Exigence d'utilisation (A)	Paramètres vis à bille (B)	Référence (C)
1	Précision de positionnement	Précision de pas	Tableau 4.1, Tableau 5.1, Tableau 6.1
2	Vitesse de rotation	Pas du filetage	$p = \frac{v_{\text{max}}}{n_{\text{max}}}$
3	Longueur totale du déplacement	Longueur totale du filetage	Longueur totale = Longueur de filetage + Longueur du tourillon de palier Longueur de filetage = Déplacement + Longueur de l'écrou + Course non utile en raison du plan de montage (par ex. enveloppe de l'écrou, boîtier du palier, etc.)
4	1 Conditions de charge [%] 2 Conditions de vitesse de rotation [%] (≤1/5 C recommandé)	Charge axiale moyenne Vitesse de rotation moyenne	Formules <u>F 3.4</u> – <u>F 3.9</u>
5	Force axiale moyenne	Précharge	Formule <u>F 3.5</u>
6	1 Durée de vie nominale 2 Charge axiale moyenne 3 Vitesse de rotation moyenne	Capacité de charge dynamique	Section <u>3.8.2, « Durée de vie »</u>
7	1 Capacité de charge dynamique 2 Pas de la vis à bille 3 Vitesse de rotation critique 4 Limitation de la vitesse de rotation par la valeur D _N	Diamètre de la vis et série	Section <u>3.8.2, « Durée de vie »</u>
8	1 Diamètre vis à bille 2 Série 3 Précharge 4 Capacité de charge dynamique	Rigidité	Section <u>3.8.7, « Rigidité »</u>
9	1 Température ambiante 2 Longueur de la vis à bille	Déformation thermique et valeur finale du pas cumulatif (T)	Section 3.8.8, « Dilatation thermique »
10	1 Rigidité de la vis 2 Déformation thermique	Précharge	Section 3.8.8, « Dilatation thermique »
11	 Vitesse de table max. Temps de démarrage max. Conception de la vis à bille 	Couple d'entraînement et conception du moteur	Section 3.8.3, « Couple d'entraînement et puissance du moteur »

3.3 Arbres de vis à billes

HIWIN propose des vis à billes roulées, tourbillonnées et rectifiées, en fonction des exigences posées par l'application. Pour sélectionner la vis adaptée, le <u>Tableau 3.2</u> compare différentes propriétés.

Tableau 3.2 Propriétés des arbres	de vis à billes		
	Roulés	Tourbillonnés	Rectifiés
Profilé	dladla	MEMEN	
Processus de fabrication	Processus de formage	Processus d'usinage	Processus de rectification
Application typique	Transport	Transport et positionnement	Positionnement
Classes de tolérance	T5 – T10	T5 + T7	T0 – T5
Diamètre nominal [mm]	8 – 63	16 – 80	6 – 100
Longueur de vis max. 1) [mm]	500 – 5.600	3.300 - 6.500	110 – 10.000
Constructions d'écrous	Bride-écrou Écrous cylindriques	Bride-écrou Écrous cylindriques Doubles écrous	Bride-écrou Écrous cylindriques Doubles écrous
Disponibilité	Départ entrepôt	Départ entrepôt	Sur demande

¹⁾ Longueur de vis max. en fonction du diamètre et de la classe de tolérance

3.4 Systèmes de recirculation des billes

Les vis à billes HIWIN sont disponibles avec trois systèmes différents de recirculation des billes.

Le système de recirculation externe est composé du tube de recirculation et de la plaque de serrage. Les billes sont placées dans la gorge de roulement entre l'arbre de vis à billes et l'écrou de vis à billes. Au bout de l'écrou, elles sont amenées hors de la gorge de roulement et retournent au point de départ via un système de recirculation ; le mouvement des billes constitue ainsi un circuit fermé. Comme le système de recirculation se trouve en dehors du corps de l'écrou, ce type de système est appelé système de recirculation externe (voir Fig. 3.7).

Avec le système de recirculation unique interne, chacune des billes est ramenée au point de départ d'un filetage avec les pièces de redirection. Les billes ne tournent qu'une seule fois autour de la vis. Ce tour est fermé par une pièce de redirection dans l'écrou de vis à billes et permet aux billes de revenir au point de départ au-delà de la crête de la vis. Le positionnement du système de redirection des billes dans l'écrou donne son nom au système de recirculation unique interne (voir Fig. 3.8).

Le troisième type de recirculation est le système de recirculation à cassette dans la <u>Fig. 3.9</u>. Le principe fondamental est similaire à celui du système de recirculation externe, à cela près que les billes sont ramenées via un canal dans l'écrou de vis à billes. Les billes effectuent un circuit complet dans l'écrou de vis à billes. La recirculation à cassette est également appelée « recirculation externe ».

Fig. 3.7 Écrou de vis à billes avec recirculation externe des billes

Fig. 3.8 Écrou de vis à billes avec recirculation unique interne

Fig. 3.9 Écrou de vis à billes avec système de recirculation à cassette

Propriétés et sélection

3.5 Variantes de déflecteurs

Déflecteur NBR (N): le modèle polyvalent

Ce déflecteur composé de caoutchouc nitrile garantit d'excellentes propriétés d'étanchéité et de nettoyage dans la plupart des environnements. Il est donc utilisé dans la quasi-totalité des applications.

Déflecteur NBR à doigts (K): pour les saletés résistantes

Il nettoie parfaitement tous les endroits envahis de saletés tenaces. Avec ses doigts en plastique dur, ce déflecteur est indispensable dans les environnements avec de grosses particules de saleté.

Déflecteur en feutre (F): le plus absorbant des déflecteurs

Le feutre possède la propriété d'absorber les liquides, de les conserver, puis de les laisser ressortir. Le déflecteur en feutre garantit donc un raclage idéal et garantit une lubrification supplémentaire.

Déflecteur à doigts en feutre (V): le duo

Avec notre duo constitué d'un déflecteur en feutre et d'un déflecteur à doigts, la saleté (grosse ou fine) n'a plus aucune chance.

Tableau 3.3 Propriétés des déflecteurs				
	NBR (N)	Feutre (F)	NBR à doigts (K)	Feutre-doigts (V)
Résistance thermique		++		+
Encrassement	+		++	+
Réduction du frottement	++		+	
Étanchéité	++		++	
Propriété de fonctionnement d'urgence		++		++
Résistance aux produits chimiques	++	+	+	+

Différence entre course de consigne et course réelle. Cette valeur est déterminée par les différentes

Déviation maximale de la course réelle par rapport à la

Course réelle effective, déterminée par mesure laser

Déviation course réelle. Déviation maximale de toute la

course réelle par rapport à la course de consigne totale

exigences de l'application chez le client.

course de consigne sur toute la distance.

effective dans la plage correspondante Déviation moyenne course réelle

Déviation dans une rotation

Course nominale Course de consigne

Déviation

3.6 Précision des vis à billes HIWIN

3.6.1 Classe de tolérance

Les vis à billes HIWIN sont fabriquées dans différentes classes de tolérances, en fonction des exigences de précision de l'application.

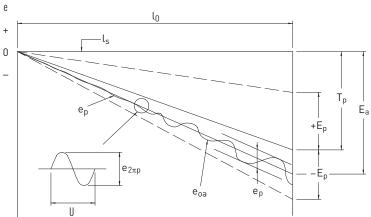
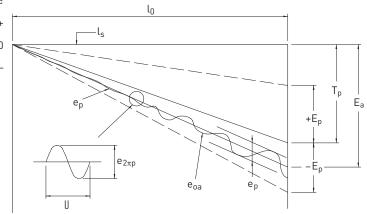



Fig. 3.10 Courbe de mesure HIWIN du pas des vis à billes de précision

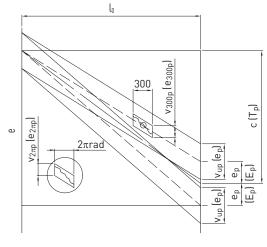
- Déviation de la course réelle sur 300 mm. Déviation de e_{300p} la course réelle sur 300 mm à n'importe quelle position
- du filetage Déviation moyenne de la course réelle sur la distance $e_{oa}\left(E_{a}\right)$ nominale l_0
- $C(T_p)$ Compensation de distance sur course utile course nominale l_0
- $e_p(E_p)$ Tolérance de la course de consigne

 T_{p}

е

 E_{p}

 $e_{2\pi p}$


 E_{a}

 e_p

 e_{oa}

 $v_{up} (e_p)$ Déviation autorisée de la course réelle sur la course nominale l_0

 v_{300p} (e_{300p})Déviation autorisée de la course sur 300 mm $v_{2\pi p}$ ($e_{2\pi p}$) Déviation autorisée de la course sur un tour

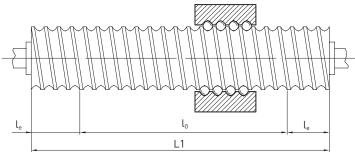


Fig. 3.11 Courbe de mesure DIN-ISO du pas des vis à billes

- Course nominale l_{0}
- Course en dehors de la course nominale
- Longueur de filetage totale

Propriétés et sélection

3.6.2 Variation de la course sur un déplacement de 300 mm

En tant qu'entreprise active à l'international, HIWIN produit des vis à billes conformément à la norme DIN ISO 3408 dans les classes de tolérance 0, 1, 3, 5, 7 et 10, et conformément au standard japonais JIS dans les classes 0, 2 et 4. Dans le <u>Tableau 3.4</u> figurent les classes de tolérance ainsi que la variation autorisée de la course v_{300p} sur une distance de 300 mm.

Tableau 3.4 Normes internationales pour les classes de tolérances des vis à billes											
Classe de toléra	ance HIWIN	TO	T1	T3	T4	T5	T7	T10			
V _{300p}	DIN ISO	3,5	6	_	12	_	23	52	210		
	JIS	3,5	_	8	_	18	_	_	_		

Unité : [µm]

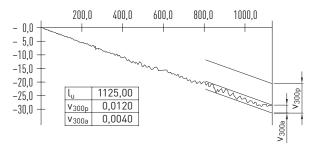


Fig. 3.12 Variation de la course sur une course utile de $300\,\mathrm{mm}$

Variation de la course sur 300 mm sur n'importe quelle position (mesure selon norme DIN 69051-3-3)

3.6.3 Déviation et variation de la course sur la course utile

Vis à billes de positionnement

Pour les vis à billes de positionnement (tourbillonnées et rectifiées), les variations autorisées sur la course utile l_u figurent dans le <u>Tableau 3.5</u>.

Tableau 3.5 Classes de tolérance des vis à billes tourbillonnées et rectifiées													
Classe de toléi	ance HIWIN	TO		T1	T1			T3		T4		T5	
Course utile l	ı	e _p	v_{up}	e _p	\mathbf{v}_{up}	e _p	V _{up}						
supérieure à	inférieure à												
-	315	4	3,5	6	6	12	8	12	12	23	18	23	23
315	400	5	3,5	7	6	13	10	13	12	25	20	25	25
400	500	6	4,0	8	7	15	10	15	13	27	20	27	26
500	630	6	4,0	9	7	16	12	16	14	30	23	32	29
630	800	7	5,0	10	8	18	13	18	16	35	25	36	31
800	1.000	8	6,0	11	9	21	15	21	17	40	27	40	34
1.000	1.250	9	6,0	13	10	24	16	24	19	46	30	47	39
1.250	1.600	11	7,0	15	11	29	18	29	22	54	35	55	44
1.600	2.000	13		18	13	35	21	35	25	65	40	65	51
2.000	2.500	15		22	15	41	24	41	29	77	46	78	59
2.500	3.150	18		26	17	50	29	50	34	93	54	96	69
3.150	4.000			32	21	60	35	62	41	115	65	115	82
4.000	5.000			39		72	41	76	49	140	77	140	99
5.000	6.300			48		90	50	92		170	93	170	119
6.300	8.000					110	60					210	130
8.000	10.000											260	145
10.000	12.000											320	180

 $\begin{array}{ll} e_p\left[\mu m\right] & \text{D\'eviation}: \text{tol\'erances de la course de consigne} \\ v_{up}\left[\mu m\right] & \text{Variation de la course sur la course utile} \end{array}$

16

Vis à billes de transport

Pour les vis à billes de transport (roulées), la déviation autorisée sur la course utile (tolérance pour la course de consigne) peut être déterminée au moyen de la formule <u>F 3.1</u>.

F 3.1

$$e_p = \pm \frac{l_u}{300} \times v_{300p}$$

e_p Déviation : tolérances de la course de consigne

l_u Course utile

 v_{300p} Variation autorisée de la course sur distance de 300 mm

Courbes de la précision de pas avec mesure sur un dispositif de mesure laser selon DIN ISO 3408

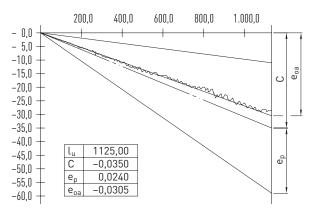


Fig. 3.13 Déviation moyenne sur la course utile l_u

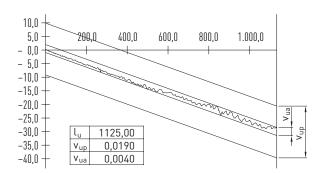


Fig. 3.14 Variation de la course sur la course utile $\boldsymbol{l_u}$

l_{II} Course utile

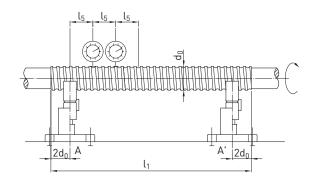
C Compensation de course

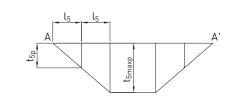
e_p Déviation : tolérances de la course de consigne

e_{oa} Déviation moyenne course réelle

l_{II} Course utile

v_{uo} Variation autorisée de la course sur la course utile


v_{ua} Variation effective de la course sur la course utile


	Application	Axe	Classes	de tolérance					
			TO	T1	T2	T3	T4	T5	T7
	Tournage	Х	0	0	0	0			
		Z				0	0	0	
	Fraisage	Х		0	0	0	0	0	
	Fraisage d'alésages	Υ		0	0	0	0	0	
		Z			0	0	0	0	
	Centres d'usinage	Х		0	0	0	0		
		Υ		0	0	0	0		
		Z			0	0	0		
	Perçage à coordonnées	Х	0	0					
		Υ	0	0					
		Z	0	0					
	Perçage	Х				0	0	0	
		Υ				0	0	0	
		Z					0	0	0
	Ponçage	Х	0	0	0				
		Υ		0	0	0			
	Électro-érosion par enfonçage	Х		0	0	0			
		Υ		0	0	0			
		Z			0	0	0	0	
	Électro-érosion par fil	Х		0	0	0			
	'	Υ		0	0	0			
		U		0	0	0	0		
		V		0	0	0	0		
	Découpe laser	Х			0	0	0		
	Decoupe tasei	Υ			0	0	0		
		7			0	0	0		
	Poinçonneuse	Х				0	0	0	
	,	Υ				0	0	0	
	Machines de traitement du bois								0
	Robots industriels de précision			0	0	0	0		
	Robots industriels							0	0
	Appareil de mesure des coordonnées		0	0	0				
	Machines non CNC					0	0	0	
	Unités de transport	1					0	0	0
	Tables X-Y			0	0	0	0	0	
	Vérins électriques linéaires	-						0	0
	Trains d'atterrissage	-						0	0
	Commande de surfaces portantes							0	0
	Vannes d'arrêt								0
	Directions assistées								0
	Polisseurs de verre				0	0	0	0	0
	Polisseurs de surface				0		0	0	
							J	0	
	Machines de durcissement par induction Machines électriques			0	0	0	0	0	0

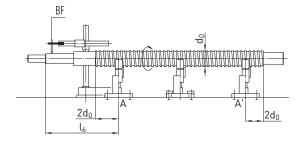

3.6.4 Indications de tolérance et méthodes de mesure pour vis à billes HIWIN

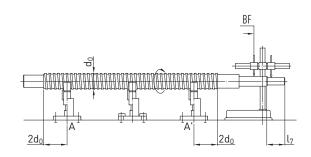
	Tableau 3.7 Tolérance du battement radial t ₅ du diamètre extérieur sur la longueur l ₅ par rapport à AA' (mesure conforme à DIN ISO 3408)												
\emptyset nominal d_0 [mm]		Long. réf. [m		Classe de tolérance l_{5p} [μm] pour l_{5}									
Supérieur à	Jusqu'à	l ₅		T0	T1	T2	T3	T4	T5	T7	T10		
6	12	80		16	20	23	25	25	32	40	80		
12	25	160		16	20	23	25	25	32	40	80		
25	50	315	315 1		20	23	25	25	32	40	80		
50	100	630		16	20	23	25	25	32	40	80		
100	200	1.250		16	20	23	25	25	32	40	80		
l ₁ /d ₀		Classe de tolérance l_{5maxp} [µm] pour $l_1 > 4l_5$											
Supérieur à	Jusqu'à	TO	T1	ı	Т2	T3	T4	T5		T7	T10		
_	40	32	40		45	50	50	64		80	160		
40	60	48	60		70	75	75	96		120	240		
60	80	80	100		115	125	125	160		200	400		
80	100	128	160		180	200	200	256)	320	640		

	Tableau 3.8 Tolérance du battement radial t_{6.1} du siège de palier sur la longueur l par rapport à AA' (mesure conforme à DIN ISO 3408)											
\emptyset nominal d_0 Long. de [mm] réf. [mm]				Classe de tolérance $t_{6.1p}$ [µm] pour l								
Supérieur à	Jusqu'à	ι	TO	T1	T2	T3	T4	T5	T7	T10		
6	20	80	6	10	11	12	12	20	40	63		
20	50	125	8	12	14	16	16	25	50	80		
50	125	200	10	16	18	20	20	32	63	100		
125	200	315	_	_	20	25	25	40	80	125		

à la ligne d	lu battement radial t _{6.2} du siège de palier par rapport e centrage de la section de filetage nforme à DIN ISO 3408)
Ø nominal d ₀	Classe de tolérance t _{6.2p} [µm]

\emptyset nominal d_0 [mm]		Classe de tolérance t _{6.2p} [µm]							
Supérieur à	Jusqu'à	TO TO	T1	T3	T5				
-	8	3	5	8	10				
8	12	4	5	8	11				
12	20	4	6	9	12				
20	32	5	7	10	13				
32	50	6	8	12	15				
50	80	7	9	13	17				
80	125	_	10	15	20				

BF Siège de palier


Propriétés et sélection

d	l'extrémit	é par rappo	ent radial t _{7.1} du diamètre du tourillon ort au siège de palier DIN ISO 3408)									
\emptyset nominal d_0 [mm]	Classe de tolérance t _{7.1p} [µm] pour l											
Supérieur à	TO	T1	T2	T3	T4	T5	T7	T10				
6	20	80	4	5	6	6	6	8	12	16		

8 10 10 12 20 25

10 12 12 16 25 32

10 16 20

Tableau 3.11 Tolérance du battement radial t_{7.2} du diamètre du tourillon
d'extrémité par rapport à la ligne de centrage du siège de palier
(mesure conforme à DIN ISO 3408)

(11000110 0011011110 0 01100)										
\emptyset nominal d_0 [mm]		Classe de tolérance t _{7.2p} [µm]								
Supérieur à Jusqu'à		TO TO	T1	T3	T5					
_	8	3	5	8	10					
8	12	4	5	8	11					
12	20	4	6	9	12					
20	32	5	7	10	13					
32	50	6	8	12	15					
50	80	7	9	13	17					
80	125	_	10	15	20					

Tableau 3.12 Déviation de battement axial $t_{8.1}$ de la surface de contact pour le palier par rapport à AA' (mesure conforme à DIN ISO 3408)

ŀ	patier par rapport a AA (mesure comornie a DIN 130 3400)									
\emptyset nominal d_0 [mm]	Classe de tolérance t _{8.1p} [µm]									
Supérieur à	Jusqu'à	TO	T1	T2	T3	T4	T5	T7	T10	
6	63	3	3	3	4	4	5	6	10	
63	125	3	4	4	5	5	6	8	12	
125	200	_	_	6	6	6	8	10	16	

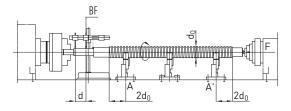


Tableau 3.13 **Déviation de battement axial t_{8.2} de la surface de contact pour le** palier par rapport à l'axe de l'arbre de vis à billes (mesure conforme à DIN ISO 3408)

Ø nominal d ₀ [mm]		Classe de tolérance $t_{8.2p}$ [μm]						
Supérieur à	Jusqu'à	TO TO	T1	T3	T5			
_	8	2	3	4	5			
8	12	2	3	4	5			
12	20	2	3	4	5			
20	32	2	3	4	5			
32	50	2	3	4	5			
50	80	3	4	5	7			
80	125	_	4	6	8			

Tableau 3.14 Déviation de battement axial t_? de la surface de contact de l'écrou de vis à billes (uniquement pour écrous de vis à billes préserrés) par rapport à AA' (mesure conforme à DIN ISO 3408)

Diamètre de bi [mm]	Classe de tolérance t _{9p} [μm]								
Supérieur à	Jusqu'à	TO	T1	T2	T3	T4	T5	T7	T10
16	32	8	10	10	12	12	16	20	_
32	63	10	12	12	16	16	20	25	_
63	125	12	16	16	20	20	25	32	_
125	250	16	20	20	25	25	32	40	_
250	500	_	_	15	32	32	40	50	_

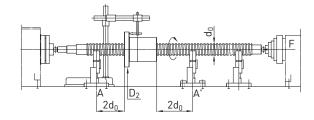


Tableau 3.15 Tolérance du battement radial t_{10} du diamètre extérieur de l'écrou de vis à billes (uniquement pour les écrous de vis à billes préserrés et rotatifs) par rapport à AA' (mesure conforme à DIN ISO 3408)

Diamètre extérieur D ₁ de l'écrou de vis à billes [mm]			se de t	oléran	ce t _{10p}	[µm]								
Supérieur à	Jusqu'à	TO	T1	T2	T3	T4	T5	T7	T10					
16	32	8	10	10	12	12	16	20	_					
32	63	10	12	12	16	16	20	25	_					
63	125	12	16	16	20	20	25	32	_					
125	250	16	20	20	25	25	32	40	_					
250	500	_	_	-	32	32	40	50	_					

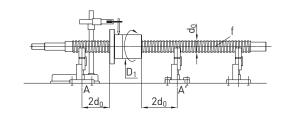
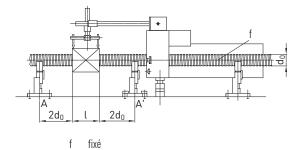



Tableau 3.16 **Déviation de parallélisme t**₁₁ **d'un écrou de vis à billes rectangu- laire (uniquement pour les écrous de vis à billes préserrés) par rapport à AA' (mesure conforme à DIN ISO 3408)**

Classe de tolérance t _{11p} [µm] / 100 mm, cumulative									
TO	T1	T2	T3	T4	T5	T7	T10		
14	16	16	20	20	25	32	_		

Propriétés et sélection

3.7 Précharge et jeu

Il existe deux types de jeu axial : d'une part le jeu axial S_a qui provient de l'air entre la bille et la gorge de roulement. D'autre part le jeu de compression $\Delta \ell$, occasionné par la force F_a .

Par défaut, les vis à billes roulées et tourbillonnées sont livrées avec un léger jeu. Cela est suffisant pour la plupart des applications et présente un avantage dans le sens où les vis à billes bougent librement et que le couple d'entraînement nécessaire est réduit.

Si les exigences posées à la précision de positionnement et à la rigidité sont plus élevées, la vis à bille doit être réglée sans jeu ou préserrée. Pour la précharge, différentes méthodes sont disponibles et expliquées dans ce qui suit.

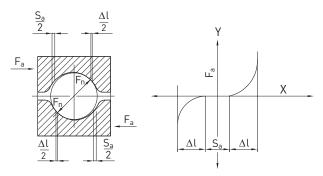


Fig. 3.15 Bande de roulement profil arc gothique et précharge

- F_a Charge axiale
- X Déviation

3.7.1 Types de précharge HIWIN

La précharge peut être générée avec un double écrou, un écrou simple avec pas décalé ou, pour les écrous simples préserrés, par l'adaptation de la taille de la bille.

Écrou simple préserré

Pour les écrous simples, il existe deux types de précharge. Le premier est appelé « méthode de précharge avec billes surdimensionnées ». Cette méthode consiste à placer des billes un peu plus grandes que l'espace dans les gorges de roulement entre la vis et l'écrou ; la bille a ainsi quatre points de contact (voir Fig. 3.16).

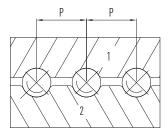


Fig. 3.16 Précharge par taille de bille

L'autre méthode est appelée « précharge par décalage de pas » (voir <u>Fig. 3.17</u>). L'écrou est rectifié de sorte à présenter un décalage par rapport au pas central. Ce type de précharge remplace la précharge classique par double écrou. Il est avantageux dans le sens où, pour des forces de précharge peu élevées, un écrou simple très rigide peut être utilisé. Cette méthode n'est toutefois pas adaptée pour des applications avec précharges importantes ou pour des pas élevés. La force de précharge recommandée est inférieure à 5 % de la capacité de charge dynamique (C).

- P Pas
- l Écrou
- 2 Vis

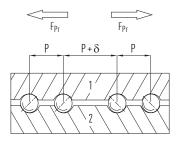


Fig. 3.17 Précharge par décalage de pas

F_{Pr} Force de précharge

P Pas

1 Écrou

2 Vis

Double écrou préserré

La précharge est générée par l'insertion d'une entretoise entre les écrous (voir <u>Fig. 3.18</u>). La précharge en 0 est obtenue par la mise en place d'une entretoise surdimensionnée qui écarte les moitiés d'écrou. La précharge en X est obtenue au moyen d'une entretoise sous-dimensionnée qui rapproche les écrous.

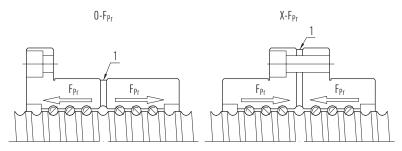


Fig. 3.18 Précharge par entretoise

F_{Pr} Force de précharge

1 Espaceur

3.7.2 Conséquences de la précharge

La précharge augmente le couple de frottement du filetage et entraîne ainsi une augmentation de la température pendant le fonctionnement. Pour garantir une durée de vie élevée et une faible augmentation de la température, la précharge ne doit pas être supérieure à 5 % de la capacité de charge dynamique pour les écrous simples et 10 % pour les doubles écrous. Les propriétés de déplacement sont également modifiées par la précharge. Outre l'augmentation du couple à vide, on observe justement sur les vis à billes à hautes classes de tolérance des variations de ce couple à vide (voir section 3.7.3).

Par principe, les vis à billes ne doivent être préserrées que lorsque cela est absolument nécessaire pour éviter un jeu axial.

3.7.3 Variation du couple à vide

(1) Méthode de mesure

La précharge génère un couple de frottement entre l'écrou et la vis filetée. Ce couple est mesuré en faisant bouger la vis filetée avec une vitesse de rotation constante, tandis que l'écrou est maintenu avec un dispositif d'immobilisation spécial (voir <u>Fig.</u> 3.19).

La force F_{Pr} mesurée par le capteur de force est prise en compte pour le calcul du couple à vide de la vis filetée.

$$T_d = \frac{K_p \times F_{pr} \times P}{2000 \times \pi}$$

T_d Couple à vide de l'écrou préserré

F_{Pr} Force de précharge

P Pa

K_P Coefficient de frottement précharge

$$K_P = \frac{1}{\eta_1} - \eta_2$$
 (entre 0,1 et 0,3)

 $\eta_1,\eta_2\;$ représentent le degré de rendement mécanique de la vis à bille

Propriétés et sélection

(2) Conditions de mesure

1. Sans déflecteur

2. Vitesse de rotation : 100 tr/min

3. Viscosité dynamique du lubrifiant 61,2 – 74,8 cSt [mm/s] à 40 °C, conf.

ISO VG 68 ou JIS K2001

(3) Le résultat de mesure est indiqué au moyen d'une représentation standard du couple à vide, la nomenclature figure dans la <u>Fig. 3.19</u>.

(4) Les variations du couple à vide (prises en compte dans la détermination de la classe de tolérance) figurent au <u>Tableau 3.17</u>.

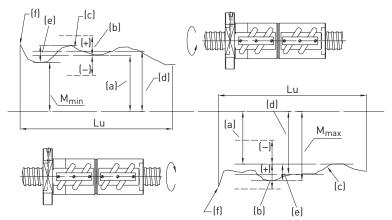


Fig. 3.19 Nomenclature de mesure des couples à vide

- (a) Couple à vide
- (b) Variations du couple à vide
- (c) Valeur du couple de frottement actuellement mesurée
- (d) Valeur du couple de frottement mesurée en moyenne
- (e) Couple de démarrage mesuré
- Lu Course utile de l'écrou
- M_{min} Couple minimal
- M_{max} Couple maximal

Tableau 3.17 F	ableau 3.17 Plage de variation du couple à vide avec précharge en % (selon DIN ISO 3408)																					
Couple de fro	ttement	Long	ueur de	cours	e utile (du filet	age [m	m]														
de base		4.000 mm maximum s										supér	supérieure à 4.000 mm									
T _{p0} [Nm]			é d'élar se de to						40 < Degré d'élancement < 60 Classe de tolérance						Classe de tolérance							
supérieur à	Jusqu'à	TO	T1	T2	T3	T4	T5	T7	TO	T1	T2	T3	T4	T5	T7	TO	T1	T2	T3	T4	T5	T7
0,2	0,4	30	35	40	40	45	50	_	40	40	50	50	60	60	_	_	_	_	_	_	_	-
0,4	0,6	25	30	35	35	40	40	-	35	35	40	40	45	45	_	_	_	-	_	_	_	-
0,6	1,0	20	25	30	30	35	35	40	30	30	35	35	40	40	45	_	_	_	40	43	45	50
1,0	2,5	15	20	25	25	30	30	35	25	25	30	30	35	35	40	_	_	_	35	38	40	45
2,5	6,3	10	15	20	20	25	25	30	20	20	25	25	30	30	35	_	_	-	30	33	35	40
6,3	10,0	_	_	15	15	20	20	30	_	_	20	20	25	25	35	_	_	_	25	23	30	35

Consigne :

- 1. Degré d'élancement = longueur de filetage de la vis/diamètre nominal de la vis [mm]
- 2. Pour déterminer le couple à vide, voir la formule <u>F 3.2</u>
- 3. Pour plus d'informations, veuillez vous adresser à HIWIN

3.8 Calculs

Bases de calcul selon DIN ISO 3408.

3.8.1 Capacités de charge

Capacité de charge dynamique C_{dyn} (théorique)

La capacité de charge dynamique décrit la charge avec laquelle 90 % de toutes les vis à billes atteignent une durée de vie de 1×10^6 rotations (C). Le facteur de fiabilité peut être pris en compte conformément au <u>Tableau 3.18</u>. La capacité de charge dynamique est indiquée dans les tableaux dimensionnels des écrous.

Capacité de charge statique Co

La capacité de charge statique décrit la charge qui entraı̂ne une déformation durable de la gorge de roulement de plus de 0,0001 du diamètre de la bille. Pour calculer la capacité de charge statique maximale, la sécurité statique S_0 des conditions d'application doit être prise en compte.

$$S_0 \times F_{amax} < C_0$$

3.8.2 Durée de vie

a) Vitesse de rotation moyenne n_m

$$n_m = n_1 \times \frac{t_1}{100} + n_2 \times \frac{t_2}{100} + n_3 \times \frac{t_3}{100} + \dots$$

b) Précharge

F 3.5

$$F_{pr} = \frac{f_{pr}}{100\,\%} \times C_{dyn}$$

F 3.6

$$F_{lim} = 2^{3/2} \times F_{pr}$$

Distinction :

 $F_n > F_{lim}$ Pas d'influence de la précharge : $F_{bn} = F_n$ $F_n < F_{lim}$ Influence de la précharge : Formule <u>F 3.7</u>

F 3.7

$$F_{bn} = \left(1 + \frac{F_n}{2^{3/2} \times F_{pr}}\right)^{3/2} \times F_{pr}$$

 F_n doit être calculé pour toutes les phases et utilisé dans la formule F 3.7.

S₀ Sécurité statique

Co Capacité de charge statique (tableau dimensionnel de l'écrou)

F_{amax} Charge axiale statique max.

n_m Vitesse de rotation moyenne totale [tr/min]

n_n Vitesse de rotation moyenne en phase n [tr/min]

t_n Temps en phase n [%]

F_{pr} Force de précharge

C_{dyn} Capacité de charge dynamique

 $\begin{array}{c} f_{pr} & \text{Facteur de précharge en \%} \\ & \text{Écrou simple } f_{pr} \leq 5 \, \% \\ & \text{Double écrou } f_{pr} \leq 10 \, \% \end{array}$

F_{lim} Force de déverrouillage

F_n Charge axiale en phase n

F_{bn} Charge axiale de service en phase n

Propriétés et sélection

c) Charge de service moyenne F

Avec charge variable et vitesse de rotation constante

F 3.8

$$F_{bm} = \sqrt[3]{F_{b1}^3 \times \frac{t_1}{100} \times f_{p1}^3 + F_{b2}^3 \times \frac{t_2}{100} \times f_{p2}^3 + F_{b3}^3 \times \frac{t_3}{100} \times f_{p3}^3 \dots}$$

 F_{bm} Charge de service moyenne [N]

 F_{bn} Charge axiale de service en phase n

f_p Facteur de conditions de service

1,1 – 1,2 Fonctionnement sans à-coups

1,3 – 1,8 Fonctionnement dans des conditions normales

2,0 – 3,0 Fonctionnement avec à-coups élevés et vibrations

3,0 – 5,0 Applications course courte < 3 × longueur écrou

Avec charge variable et vitesse de rotation variable

F 3.9

$$F_{bm} = \sqrt[3]{F_{b1}}^3 \times \frac{n_1}{n_m} \times \frac{t_1}{100} \times f_{p1}^3 + F_{b2}^3 \times \frac{n_2}{n_m} \times \frac{t_2}{100} \times f_{p2}^3 + F_{b3}^3 \times \frac{n_3}{n_m} \times \frac{t_3}{100} \times f_{p3}^3 \dots$$

d) Charge axiale bilatérale

- Durée de vie en rotations

F 3.10

$$L_1 = \left(\frac{C_{dyn}}{F_{bm1}}\right)^3 \times 10^6$$

$$L_1 = \left(\frac{C_{dyn}}{F_{bm1}}\right)^3 \times 10^6 \qquad \qquad L_2 = \left(\frac{C_{dyn}}{F_{bm2}}\right)^3 \times 10^6$$

F 3.11

$$L = \left(L_1^{-10/9} + L_2^{-10/9}\right)^{-9/10}$$

L₁ Durée de vie en rotations vers l'avant

L₂ Durée de vie en rotations vers l'arrière

 C_{dyn} Capacité de charge dynamique [N]

 F_{bm1} Charge de service moyenne en déplacement vers l'avant

F_{bm2} Charge de service moyenne en déplacement vers l'arrière

L Durée de vie en rotations

Conversion de la durée de vie en heures de service

F 3.12

$$L_h = \frac{L}{n_m \times 60}$$

L_h Durée de vie en heures de service

 n_{m} $\,\,$ Vitesse de rotation moyenne [tr/min], voir formule $\underline{F~3.4}$

Conversion de la distance parcourue [km] en heures de service

F 3.13

$$L_h = \left(\frac{L_{km} \times 10^6}{P}\right) \times \frac{1}{n_m \times 60}$$

L_h Durée de vie en heures de service

L_{km} Durée de vie en distance parcourue [km]

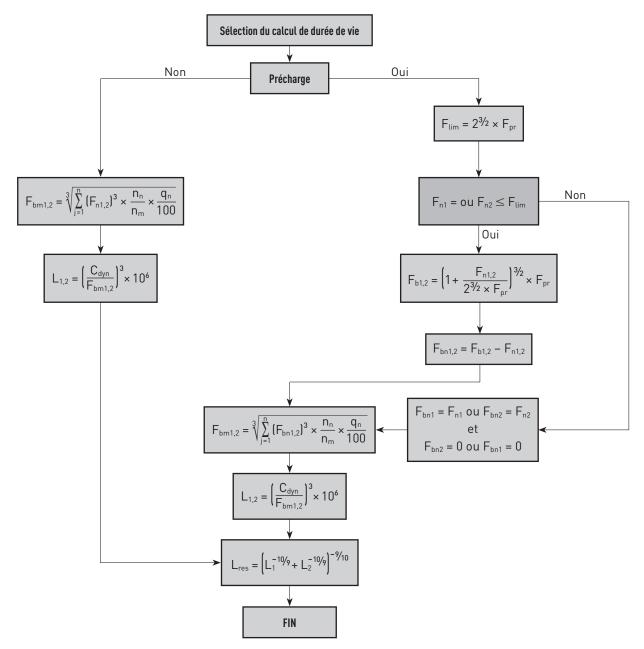
Pas [mm]

Vitesse de rotation moyenne [tr/min]

La durée de vie modifiée pour différents facteurs de fiabilité est calculée par

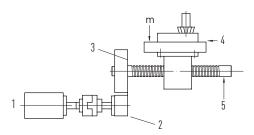
F 3.14

$$L_m = L \times f_r$$


$$L_{hm} = L_h \times f_r$$

Facteur de fiabilité (voir Tableau 3.18)

Tableau 3.18 Facteur de fiabilité pour calcul de la durée de vie							
Résistance %	Facteur de fiabilité f _r						
90	1,00						
95	0,63						
96	0,53						
97	0,44						
98	0,33						
99	0,21						



Déroulement du calcul de la durée de vie

3.8.3 Couple d'entraînement et puissance du moteur

<u>Fig. 3.20</u> indique les facteurs déterminants d'un système d'avance avec vis à bille. Vous trouverez ci-après la formule de calcul du couple d'entraînement nécessaire du moteur :

(1) Moteur, (2) Réducteur 1, (3) Réducteur 2, (4) (Force de friction + force de service), (5) Vis à bille

Fig. 3.20 Courbe de charge d'un système avec vis à bille

Propriétés et sélection

 Fonctionnement normal (conversion d'un mouvement rotatif en mouvement linéaire)

$$T_a = \frac{F_w \times P}{2.000 \times \pi \times \eta_1}$$

Fonctionnement inversé (conversion d'un mouvement linéaire en mouvement rotatif)

$$T_c = \frac{F_w \times P \times \eta_2}{2.000 \times \pi}$$

Couple d'entraînement du moteur
 Pour mode normal :

F 3.17

$$T_{M} = [T_{a} + T_{b} + T_{d}] \frac{N_{1}}{N_{2}}$$

Pour accélération :

F 3.18
$$T'_a = J \times \alpha$$

F 3.19
$$\alpha = \frac{2\pi \times \Delta n}{60 \times t_a}$$

F 3.20
$$\Delta n = n_2 - n_1$$

$$J = J_M + J_{G1} + J_{G2} \times \left(\frac{N_1}{N_2}\right)^2 + \frac{1}{2} m_r \times \left(\frac{d_n}{2000}\right)^2 \times \left(\frac{N_1}{N_2}\right)^2 + m_l \times \left(\frac{P}{2000\pi}\right)^2 \times \left(\frac{N_1}{N_2}\right)^2$$

= Inertie moteur + Inertie réducteur équivalente + Inertie vis à bille (voir Fig. 3.20)

T_a Couple d'entraînement pour mode normal [Nm]

T_c Couple d'entraînement pour mode inversé [Nm]

P Pas [mm]

 η_1 Degré de rendement mécanique (0,85 – 0,95), mode normal

 η_2 Degré de rendement mécanique (0,75 – 0,85), mode inversé

T_b Couple de frottement du palier de support [Nm]

T_d Couple à vide [Nm]

N₁ Nombre de dents de la roue dentée motrice

N₂ Nombre de dents de la roue dentée entraînée

J Couple d'inertie du système [Nm²]

a Accélération d'angle [rad/s²]

t_a Temps de démarrage accélération [s]

n₁ Vitesse de rotation initiale [tr/min]

n₂ Vitesse de rotation finale [tr/min]

m_l Masse des composants en mouvement linéaire [kg]

d_n Diamètre nominal vis à bille [mm]

J_M Inertie moteur [kgm²]

J_{G1} Inertie du réducteur d'entraînement [kgm²]

J_{G2} Inertie du réducteur entraîné [kgm²]

Couple d'entraînement total :

$$F 3.22 T_{Ma} = T_M + T'_a$$

T_{Ma} Couple d'entraînement total [Nm]

Puissance moteur

F 3.23

$$P_{A} = \frac{T_{pmax} \times n_{max}}{9.550}$$

- Contrôle du temps d'accélération

$$t_{a} = \frac{J}{T_{M1} - T_{L}} \times \frac{2\pi \times n_{max}}{60} \times f$$

3.8.4 Charge de flambage

$$F_k = 4,072 \times 10^5 \left(\frac{f_k \times d_k^4}{l_s^2} \right)$$

$$F_{kmax} = 0.5 \times F_{k}$$

3.8.5 Vitesse de rotation critique

$$n_k = 2,71 \times 10^8 \left(\frac{f_n \times d_k}{l_s^2} \right)$$

$$n_{kmax} = 0.8 \times n_k$$

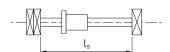


Fig. 3.21 Définition «Longueur de vis non soutenue»

P_A Puissance moteur maximale pour fonctionnement sûr [kW]

 T_{pmax} Couple d'entraı̂nement maximal

(facteur de sécurité × T_{max}) [Nm]

n_{max} Vitesse de rotation maximale [tr/min]

t_a Temps de démarrage accélération [s]

J Couple d'inertie total [kgm²]

T_{M1} Couple nominal du moteur [Nm]

 T_L Couple d'entraînement avec vitesse de rotation nominale $[\mathsf{Nm}]$

f Facteur de sécurité = 1,5

F_k Charge autorisée [N]

F_{kmax}Charge max. autorisée [N]

 d_k Diamètre central tige filetée [mm]

 l_s Longueur de vis non soutenue [mm] (voir <u>Fig. 3.21</u>)

 $f_{\boldsymbol{k}}$ Facteur pour différents types de montage (charge de flambage)

Palier fixe – Palier fixe $f_k = 1,0$

Palier fixe – Palier libre $f_k = 0.5$

Palier libre – Palier libre $f_k = 0.25$

Palier fixe – Sans palier $f_k = 0.0625$

n_k Vitesse de rotation critique [tr/min]

n_{kmax}Vitesse de rotation max. autorisée [tr/min]

d_k Diamètre central tige filetée [mm]

ls Longueur de vis non soutenue [mm] (voir <u>Fig. 3.21</u>)

 f_n Facteur pour différents types de montage (vitesse de rotation critique)

Palier fixe – Palier fixe $f_n = 1,0$

Palier fixe – Palier libre $f_n = 0.692$

Palier libre – Palier libre $f_n = 0,446$

Palier fixe – Sans palier $f_n = 0.147$

Propriétés et sélection

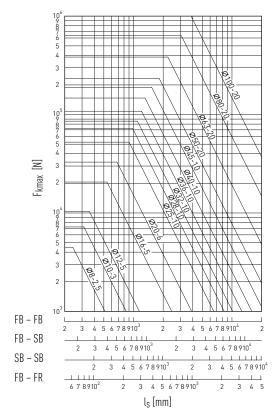


Fig. 3.22 Charge de flambage pour différents diamètres et longueurs de vis filetées

Ø100-20 Ø80-20 Ø63-20 4 Ø50-12 Ø45-10 Ĺø40-10 nk [1/min] Ø32-10 Ø28-10 ⊥<u>ø20-'</u>6 4 Ø16-5 ø12-5 Ø10-3 ø8-2,5 FB - FB FB - SB 4 5 6 7 8 9 10 4 5 6 7 8 9 10³ FB - FR l{S} [mm]

Fig. 3.23 Vitesse de rotation critique pour différents diamètres et longueurs de vis filetées

3.8.6 Valeur D_N pour la vitesse de rotation de travail d'une vis à bille

La caractéristique de vitesse de rotation D_N a une influence importante sur le comportement de la vis à bille en termes de développement du bruit et de la chaleur ainsi que la durée de vie du système de recirculation.

Pour vis à billes HIWIN

$$D_{\text{N}} = d_{\text{s}} \times n_{\text{max}}$$

 $D_{\text{N}} \leq 90.000$ pour vis à billes avec recirculation à cassette

 $D_{\text{N}} \leq 120.000$ pour vis à billes avec recirculation à cassette et sans jeu

 $D_N \le 150.000$ pour vis à billes High-Speed (sur demande)

3.8.7 Rigidité

La rigidité indique la souplesse d'un élément de machine. La rigidité globale d'une vis à bille est déterminée par la rigidité axiale du système écrou-arbre, la rigidité de contact de la gorge de roulement et la rigidité de la vis filetée. Lors du montage d'une vis à bille dans une machine, les facteurs suivants doivent également être pris en compte : Rigidité des paliers de support, conditions de montage de l'écrou avec table, etc.

La rigidité de l'unité écrou-vis et de celle de la bille et de la gorge de roulement peuvent être combinées en rigidité de l'écrou $R_{\rm n}$, indiquée dans le tableau dimensionnel des différents types d'écrous.

Rigidité d'une vis à bille

F 3.30

$$\frac{1}{R_{bs}} = \frac{1}{R_s} + \frac{1}{R_n}$$

 l_s Longueur de vis non soutenue [mm]

 F_{kmax} Charge axiale critique [N]

n_k Vitesse de rotation critique [tr/min]

FB Palier fixe

FR ans palier

SB Palier libre

d_s Diamètre de la vis [mm]

n_{max} Vitesse de rotation max. [tr/min]

 R_{bs} Rigidité totale d'une vis à bille [N/ μ m]

R_s Rigidité de la vis filetée [N/µm]

R_n Rigidité de l'écrou [N/µm]

- Rigidité de la vis filetée

F 3.31

$$R_{s1} = \frac{\pi \times d_c^2 \times E}{4 \times l_1 \times 10^3}$$

fixe - libre/sans palier

F 3.32

$$R_{s2} = \frac{\pi \times d_c^2 \times E}{4 \times l_1 \times 10^3} \times \frac{l_2}{l_2 - l_1}$$

fixe - fixe

F 3.33

$$d_c = PCD - D_k \times \cos \alpha$$

- Rigidité de l'écrou

La rigidité de l'écrou peut être contrôlée en utilisant une force axiale qui correspond à la précharge maximale possible de 10 % de la capacité de charge $\{C_{dyn}\}$ (celle-ci est indiquée dans les tableaux dimensionnels des écrous). Si la précharge est inférieure, la rigidité de l'écrou peut être déterminée par extrapolation :

F 3.34

$$R_n = 0.8 \times R \times \left(\frac{F_{pr}}{0.1 \times C_{dyn}}\right)^{1/3}$$

La rigidité d'un écrou simple avec jeu peut être calculée comme suit avec une charge axiale externe 0,28 $\rm C_{dvn}$:

F 3.35

$$R_{n} = 0.8 \times R \times \left(\frac{F_{bm}}{0.28 \times C_{dyn}}\right)^{1/3}$$

La rigidité axiale d'un système d'avance contient celle des paliers de support et de la table de montage. La rigidité totale doit être soigneusement prise en compte lors de la conception du système.

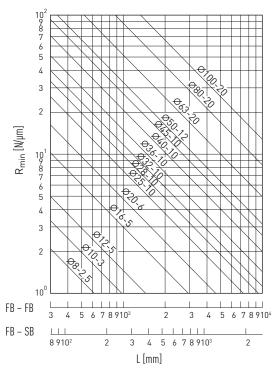
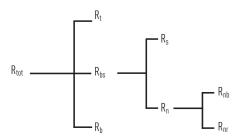
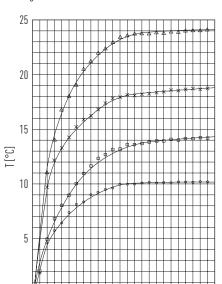



Fig. 3.24 Diagramme de rigidité pour vis à billes

- R_s Rigidité de la vis filetée [N/μm]
- d_c Diamètre avec lequel la force agit sur l'arbre de vis à billes
- E Module d'élasticité [N/mm²]
- α Angle de contact entre la bille et le chemin de roulement [°]
- PCD Diamètre circuit billes central [mm]
- D_k Diamètre nominal de la bille [mm]
- l₁ Distance palier écrou [mm]
- l₂ Distance palier palier [mm]

- R_n Rigidité de l'écrou [N/μm]
- R Rigidité conformément au tableau dimensionnel [N/µm]
- F_{pr} Précharge [N]
- C_{dvn} Capacité de charge dynamique du tableau dimensionnel [N]
- R_n Rigidité de l'écrou [N/µm]
- R Rigidité conformément au tableau dimensionnel [N/µm]
- F_{bm} Charge de service moyenne [N]
- C_{dyn} Capacité de charge dynamique du tableau dimensionnel [N]

- L Longueur de la vis [mm]
- R_{min} Rigidité minimale de la vis [N/μm]
- R_{tot} Rigidité totale du système d'avance
- R_t Rigidité de la table de montage
- R_b Rigidité du palier de support
- R_{bs} Rigidité de la vis à bille
- R_s Rigidité de la vis filetée
- R_n Rigidité de l'écrou de vis à bille
- R_{nb} Rigidité des billes et de la gorge de roulement
- R_{nr} Rigidité du système écrou-vis avec charge radiale


Fig. 3.25 Facteurs de rigidité pour systèmes d'avance avec vis à billes

Propriétés et sélection

3.8.8 Dilatation thermique

L'augmentation de la température dans les arbres de vis à billes pendant le fonctionnement influence la précision, étant donné que la vis filetée se dilate sous l'effet de la sollicitation thermique. Les facteurs suivants influencent l'augmentation de la température dans les vis à billes :

- 1) Précharge
- 2) Graissage
- 3) Étirage de la vis

<u>Fig. 3.26</u> indique la relation entre la vitesse de rotation de service, la précharge et l'augmentation de la température. <u>Fig. 3.27</u> indique l'augmentation de la température dans l'écrou en fonction du couple à vide.

Données techniques vis à bille : R40-10-B2-FDW

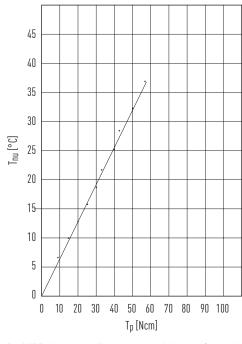
 Δ = 1.500 tr/min pour précharge de 2.000 N

 \times = 1.500 tr/min pour précharge de 1.000 N

 \Box = 500 tr/min pour précharge de 2.000 N

o = 500 tr/min pour précharge de 1.000 N

Fig. 3.26 Relation entre la vitesse de rotation de service, la précharge et l'augmentation de la température


180

240

120

t [min]

60

Diamètre de la vis R40
Pas 10
Diamètre de la bille 6,35
Circulations 2,5 × 2
Vitesse de rotation 2.000 tr/min
Période de service1,5 sec
Période d'arrêt 1 sec

T_{nu} Tmpérature dans l'écrou [°C]
T_p Couple de marche à vide [Ncm]

Fig. 3.27 Relation entre l'augmentation de la température dans l'écrou de vis à billes et le couple à vide

La dilatation thermique de la vis filetée peut être déterminée par la formule <u>F 3.36</u>. La dilatation peut être compensée par l'étirage de la vis. Veuillez vous adresser à HIWIN.

F 3.36
$$\Delta L = 11.6 \times 10^{-6} \times \Delta T \times l_{s:ges}$$

ΔL Dilatation thermique d'une vis filetée [mm]

ΔT Augmentation de la température dans la vis filetée [°C]

 $L_{s;ges}$ Longueur de filetage + portée (ga/dr) [mm]

3.9 Matériau et traitement thermique

3.9.1 Matériaux des composants

s
s

¹⁾ Écrous spéciaux 1.7131

3.9.2 Traitement thermique

<u>Tableau 3.20</u> indique la dureté des composants principaux dans les vis à billes HIWIN. La dureté de surface des vis à billes influence aussi bien la capacité de charge dynamique que la capacité de charge statique. Les capacités de charge dynamique et statique indiquées dans les tableaux dimensionnels se basent sur une dureté de surface conforme à HRC 60. Pour des duretés de surface inférieures à cette valeur, les capacités de charge peuvent être déterminées avec le calcul suivant.

F3.37
$$C'_0 = C_0 \times f_{H0}$$
 $f_{H0} = \left(\frac{H_R}{60}\right)^3 \le 1$

F 3.38
$$C' = C_{dyn} \times f_H \qquad \quad f_H = \left(\frac{H_R}{60}\right)^2 \leq 1$$

avec les degrés de dureté f_H et f_{HO}

Co Capacité de charge statique corrigée

C₀ Capacité de charge statique avec 60 HRC

H_r Dureté réelle (HRC)

C' Capacité de charge dynamique corrigée

C_{dyn} Capacité de charge dynamique pour 60 HRC

H_r Dureté réelle (HRC)

Tableau 3.20 Degrés de dureté des composants utilisés pour les vis à billes HIWIN									
Composants	Méthode de durcissement	Degré de dureté (HRC)							
Vis	Cémentation	58 – 62							
Écrou	Cémentation ou durcissement par induction	58 – 62							
Bille		62 – 66							

3.10 Lubrification

En fonction du cas d'application, les vis à billes HIWIN peuvent être lubrifiées avec de la graisse, de la graisse fluide ou de l'huile. Elles sont généralement livrées en conserve et ne doivent jamais être mises en service sans premier graissage. Les consignes pour le premier graissage et les quantités de lubrifiant ainsi que les intervalles de graissage figurent dans les Instructions de montage « Vis à billes ».

Tableau 3.21 Consignes de contrôle et de remplissage du lubrifiant							
Méthode de lubrification	Consignes de contrôle						
Huile	Contrôlez le niveau d'huile 1 × par semaine et vérifier l'absence d'impuretés dans l'huile En cas d'impuretés, il est recommandé de changer l'huile						
Graisse	Contrôlez l'absence d'impuretés dans la graisse tous les deux à trois mois En cas d'impuretés, remplacez l'ancienne graisse par de la nouvelle Dans tous les cas, changez la graisse une fois par an						

Vis à billes roulées

4. Vis à billes roulées

4.1 Propriétés

Les vis à billes roulées présentent l'avantage de réduire le frottement et de garantir un déplacement plus discret des systèmes d'avance par rapport aux filetages traditionnels.

Pour leur fabrication, HIWIN mise sur des technologies de pointe dans le procédé de roulage, en adaptant précisément les uns aux autres les processus de sélection des matériaux, de roulage, de traitement thermique, d'usinage et de montage.

Les vis à billes roulées d'HIWIN sont polyvalentes et peuvent être utilisées dans presque tous les domaines de l'industrie. Les arbres de vis à billes roulés peuvent être livrés rapidement dans la mesure des stocks disponibles dans des diamètres de 8 à 63 mm. Ils peuvent être livrés au choix avec ou sans traitement final. Des unités de palier complètes associées à des portées standardisées permettent de fournir des vis à billes complètes tout en un.

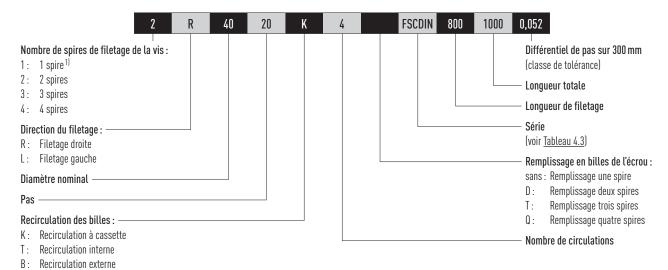
4.2 Classes de tolérance

<u>Tableau 4.1</u> indique les classes de tolérance des vis à billes roulées. La précision de pas est définie par une variation de la course de consigne sur n'importe quelle distance de 300 mm dans une longueur totale. La déviation sur toute la course utile est déterminée par la formule \underline{F} 3.1 à la page 17.

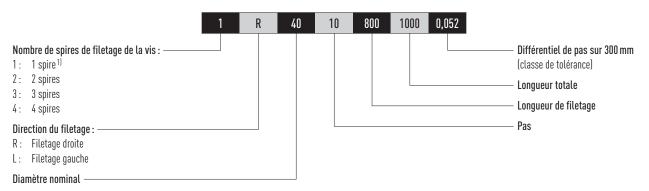
Tableau 4.1 Classes de tolérance des vis à billes roulées													
Déviation	Classe de tolérance	Classe de tolérance											
	T5	Т7	T10										
V _{300p}	0,023	0,052	0,21										

Unité: mm

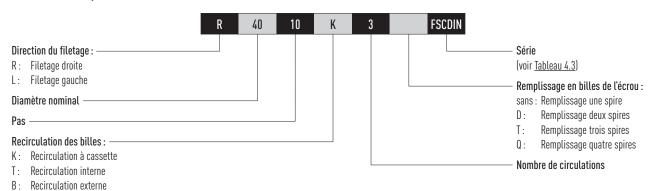
Tableau 4.2 Ap	Tableau 4.2 Aperçu des vis à billes roulées disponibles																			
Diamètre nominal	Pas	Pas																Longueur de vis max.		
	1	1,25	2	2,5	3	4	5	5,08	6	8	10	12	16	20	25	32	40	50	T5	T7, T10
8			0	ox	0		0												_	800
10			0	ox	0	ox	0		0		0								600	1.500
12			0	0	0	ox	ox	0		0	ox	0							600	1.500
15							ox				0			0					1.500	3.000
16	0		0	0		0	ox	0	0	0	ox	0	ox	ox		0			1.500	3.000
20				0		0	ox	0	0	0	ox			ox			0		1.500	3.000
25				0		0	ox	0	0	0	ox				ox				2.500	4.500
32						0	ox	0	0	0	ox			ox		ox	0		2.500	4.500
40							ox		0	0	ox	0	0	ox	0		ox		3.000	5.600
50							ox		0		ox	0	0	ox			ox	0	4.000	5.600
63											ox	0	0	0			0		4.000	5.600


Unité : mm

- O Filetage droite et gauche
- O Seulement filetage droite
- × Type préférentiel pour filetage droite avec livraison rapide en T7
- × Type préférentiel pour filetage droite avec livraison rapide en T5 et T7

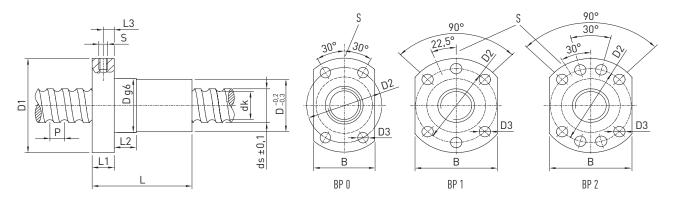


4.3 Code de commande HIWIN pour vis à billes roulées


Pour une identification claire de la vis à bille, des informations sur l'arbre de vis à billes et l'écrou de vis à billes sont nécessaires.

Code de commande pour arbre de vis à billes sans écrou de vis à billes

Code de commande pour écrou de vis à billes sans arbre de vis à billes


^{1]} Standard ; peut être absent pour les vis à une spire

Vis à billes roulées

Tableau 4.3 Aperçu séries								
Série	Description							
FSIDIN	Écrou simple à bride avec recirculation unique interne							
FSCDIN	Écrou simple à bride avec recirculation à cassette							
RSI	Écrou simple cylindrique avec recirculation unique interne							
RSIT	Écrou simple cylindrique avec trou fileté et recirculation unique interne							

4.4 Écrous pour vis à billes roulées

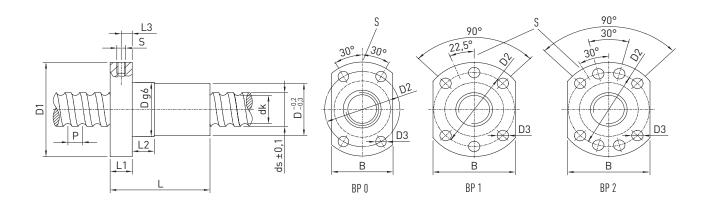

4.4.1 Écrou simple à bride FSCDIN/FSIDIN

Tableau 4.4 Dimensions de l'écrou																		
Туре	ds	Р	D	D1	D2	D3	Schéma de perçage BP	L	L1	L2	L3	Trou de lubrifi- cation S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]
R12-05K4-FSCDIN	11,7	5	24	40	32	4,5	0	33	8	8	4	M3	26	9,9	6.900	12.000	0,02	0,11
R12-10K3-FSCDIN	11,8	10	24	40	32	4,5	0	43	8	8	4	M3	26	9,6	6.400	10.100	0,02	0,13
R15-05K4-FSCDIN	13,9	5	28	48	38	5,5	1	38	10	10	5	M6	40	11,8	12.600	21.000	0,04	0,18
R16-05T3-FSIDIN	15,5	5	28	48	38	5,5	1	40	10	10	5	M6	40	12,9	8.100	11.700	0,04	0,18
R16-10K3-FSCDIN	14,7	10	28	48	38	5,5	1	45	10	10	5	M6	40	12,5	9.900	19.300	0,04	0,20
R16-16K3-FSCDIN	15,0	16	28	48	38	5,5	1	61	12	20	6	M6	40	13,0	9.900	17.000	0,04	0,26
R16-20K2-FSCDIN	14,0	20	28	48	38	5,5	1	56	10	10	5	M6	40	11,8	6.500	10.400	0,04	0,25
R20-05K4-FSCDIN	19,6	5	36	58	47	6,6	1	40	10	10	5	M6	44	16,9	16.400	32.740	0,04	0,28
R20-10K3-FSCDIN	19,3	10	36	58	47	6,6	1	48	10	10	5	M6	44	16,6	12.100	23.500	0,04	0,32
R20-20K2-FSCDIN	19,7	20	36	58	47	6,6	1	57	10	10	5	M6	44	17,1	8.400	15.300	0,04	0,37
R20-20K4-DFSCDIN	19,7	20	36	58	47	6,6	1	57	10	10	5	M6	44	17,1	15.300	30.500	0,04	0,36
R25-05K4-FSCDIN	24,9	5	40	62	51	6,6	1	43	10	12	5	M6	48	22,3	18.200	40.700	0,04	0,22
R25-10K4-FSCDIN	24,5	10	40	62	51	6,6	1	61	10	16	5	M6	48	21,8	18.100	44.900	0,04	0,43
R25-25K2-FSCDIN	24,7	25	40	62	51	6,6	1	70	10	16	5	M6	48	22,1	9.300	19.100	0,04	0,48
R25-25K4-DFSCDIN	24,7	25	40	62	51	6,6	1	70	10	16	5	M6	48	22,1	16.900	38.200	0,04	0,46
R32-05K6-FSCDIN	31,7	5	50	80	65	9	1	48	12	10	6	M6	62	29,1	29.200	81.900	0,04	0,59
R32-10K5-FSCDIN	31,8	10	50	80	65	9	1	77	12	16	6	M6	62	28,6	33.000	80.100	0,04	0,82
R32-20K3-FSCDIN	31,8	20	50	80	65	9	1	88	12	16	6	M6	62	28,6	20.900	48.500	0,04	0,91
R32-32K2-FSCDIN	31,9	32	50	80	65	9	1	88	12	20	6	M6	62	28,7	14.200	31.800	0,04	0,90
R32-32K4-DFSCDIN	31,9	32	50	80	65	9	1	88	12	20	6	M6	62	28,7	25.700	62.200	0,04	0,87

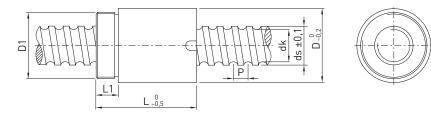
Toutes les dimensions sans unité sont indiquées en mm

Tableau 4.4 Dimension	ıs de l'	écrou																
Туре	ds	P	D	D1	D2	D3	Schéma de perçage BP	L	L1	L2	L3	Trou de lubrifi- cation S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]
R40-05K6-FSCDIN	39,4	5	63	93	78	9	2	50	14	10	7	M8 × 1	70	36,8	31.700	100.600	0,04	0,93
R40-10K4-FSCDIN	37,8	10	63	93	78	9	2	70	14	16	7	M8 × 1	70	32,8	55.700	123.000	0,04	1,19
R40-20K3-FSCDIN	37,8	20	63	93	78	9	2	88	14	16	7	M8 × 1	70	32,8	42.200	90.000	0,07	1,43
R40-40K2-FSCDIN	37,9	40	63	93	78	9	2	102	14	16	7	M8 × 1	70	32,9	28.500	58.400	0,07	1,61
R40-40K4-DFSCDIN	37,9	40	63	93	78	9	2	102	14	16	7	M8 × 1	70	32,9	51.700	115.800	0,07	1,59
R50-05K6-FSCDIN	49,4	5	75	110	93	11	2	50	16	10	8	M8 × 1	85	46,8	34.600	127.200	0,07	1,32
R50-10K6-FSCDIN	48,0	10	75	110	93	11	2	90	16	20	8	M8 × 1	85	42,9	89.800	250.000	0,07	2,05
R50-20K5-FSCDIN	47,9	20	75	110	93	11	2	132	18	25	9	M8 × 1	85	42,9	75.700	217.500	0,07	2,89
R50-40K3-FSCDIN	50,0	40	75	110	93	11	2	149	18	45	9	M8 × 1	85	45,0	48.300	123.000	0,07	2,96
R50-40K6-DFSCDIN	50,0	40	75	110	93	11	2	149	18	45	9	M8 × 1	85	45,0	87.800	242.600	0,07	2,93
R63-10T6-FSIDIN	63,1	10	90	125	108	11	2	120	18	16	9	M8 × 1	95	58,0	75.900	214.090	0,07	3,30

Toutes les dimensions sans unité sont indiquées en mm

Écrous à déflecteurs NBR

Enveloppe de l'écrou, voir section <u>8.4</u>
Sans jeu sur demande pour T5
FSCDIN/FSIDIN : écrou remplissage une spire


DFSCDIN : écrou remplissage deux spires

R12 à R40 également disponibles en T5

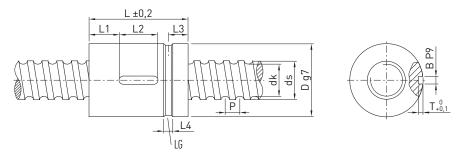
Exemple de commande : 25 10 K3 FSCDIN 650 730 0,052

Vis à billes roulées

4.4.2 Écrou simple cylindrique avec trou fileté RSIT

Un apport suffisant en lubrifiant doit être assuré directement sur la vis via un conduit.

Tableau 4.5 Dimension	ns de l'écrou										
Туре	ds	Р	D	D1	L	L1	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]
R08-02,5T2-RSIT ¹⁾	7,7	2,5	17,5	M15 × 1	27,5	7,5	6,1	1.600	1.750	0,04	0,03
R10-02,5T2-RSIT ²	9,9	2,5	19,5	M17 × 1	25,0	7,5	8,1	2.100	2.630	0,04	0,04
R10-04T2-RSIT ²⁾	9,9	4,0	24,0	M22 × 1	32,0	10,0	7,7	2.400	2.820	0,04	0,08
R12-04B1-RSIT ¹⁾	12,0	4,0	25,5	M20 × 1	34,0	10,0	9,5	4.200	5.700	0,04	0,08


Toutes les dimensions sans unité sont indiquées en mm

Jeu axial réduit sur demande

Écrous avec déflecteurs de souillures

Exemple de commande : R 12 4 B1 RSIT 350 405 0,052

4.4.3 Écrous simples cylindriques RSI

LG Gorge pour l'alimentation en lubrifiant

Tableau 4.6 Dimensio	ns de l'é	crou													
Type ds P D L L1 L2 L3 L4 T B dk Capacité de charge dyn. Capacité de charge stat. Cdyn [N] Co [N] Masse															Masse [kg/pce.]
R16-10T3-RSI	15,4	10	28	60	8	20	9,5	5	2,5	4	12,9	7.600	10.800	0,04	0,17
R20-10T3-RSI	19,9	10	34	60	20	20	12,0	4	2,0	5	17,5	11.300	12.600	0,04	0,35

Toutes les dimensions sans unité sont indiquées en mm

Jeu axial réduit sur demande

- Écrous avec déflecteurs de souillures

Exemple de commande :	R	16	10	T3	RSI	350	405	0,052

¹⁾ Déflecteur polyamide unilatéral

²⁾ Sans déflecteur de souillures

5. Vis à billes tourbillonnées

5.1 Propriétés

Les vis à billes tourbillonnées d'HIWIN constituent une étape intermédiaire en termes de qualité entre les vis à billes roulées et rectifiées. Elles sont donc polyvalentes et peuvent être utilisées pour des applications de transport ou de positionnement. Sur demande, nous élaborons pour vous un protocole de mesure du pas à cet effet. Pour les vis à billes tourbillonnées, de nombreuses constructions d'écrous, simples ou doubles, sont disponibles. Des vis à billes complètes peuvent être fabriquées selon les souhaits du client et livrées rapidement. Des unités de palier complètes associées à des portées standardisées permettent de réduire les efforts de construction.

5.2 Classes de tolérance

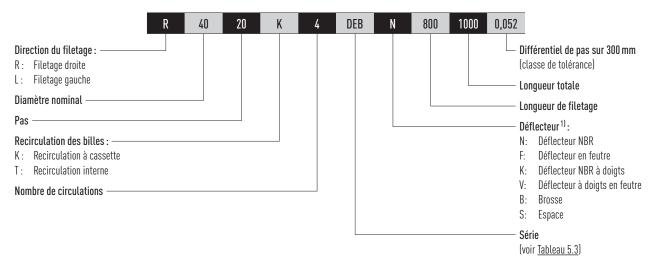
<u>Tableau 5.1</u> indique les classes de tolérance des vis à billes tourbillonnées. La précision de pas est définie par une variation de la course de consigne sur n'importe quelle distance de 300 mm dans une longueur totale.

Tableau 5.1 Classes de tol	érance des vis à billes tourbillonnées	
Déviation	Classe de tolérance	
	T5	Т7
V _{300p}	0,023	0,052
Unité : mm		

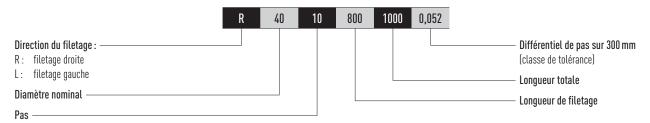
Tableau 5.2 Aperçu des	vis à billes tourbille	onnées disponibles			
Diamètre nominal	Pas			Longueur de vis max. 1)	Longueur de filetage max.
	5	10	20		
16	ox			6.000	4.700
20	ox			6.000	5.100
25	ox	ox		6.000	5.100
32	ox	ox	ox	6.000	5.100
40	ox	ox	ox	6.000	5.100
50	ox	ox	ox	6.000	5.100
63		ox	ox	6.000	5.100
80		ox	ox	6.000	5.100

Unité : mm

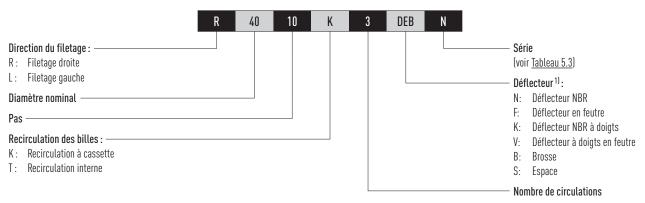
Des longueurs plus importantes sont disponibles sur demande


- O Filetage droite et gauche
- $m{ imes}$ Type préférentiel pour filetage droite avec livraison rapide

¹⁾ Avec les vis longues, tenez toujours compte de la vitesse de rotation critique et de la charge de flambage max.


Vis à billes tourbillonnées

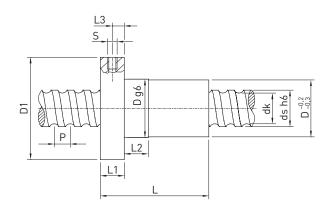
5.3 Code de commande HIWIN pour vis à billes tourbillonnées


Pour une identification claire de la vis à bille, des informations sur l'arbre de vis à billes et l'écrou de vis à billes sont nécessaires.

Code de commande pour arbre de vis à billes sans écrou de vis à billes

Code de commande pour écrou de vis à billes sans arbre de vis à billes

¹⁾ Le racleur utilisé est indiqué dans les tableaux suivants pour les différents types de noix. Pour les types de noix DEB-x et DDB-x vous pouvez choisir entre les racleurs du type N, K, F ou V, selon le pas de vis.


Tableau 5.3 Aperçu séries	
Série	Description
DEB-x	Écrou simple à bride avec type de racleur variable
DDB-x	Double écrou à bride avec type de racleur variable
ZE	Écrou simple cylindrique
SE	Écrou simple cylindrique avec trou fileté
SEM	Écrou simple à bride avec écrou de sécurité intégré ²⁾

²⁾ La seule utilisation d'un écrou de sécurité n'est pas une sécurité suffisante contre la chute incontrôlée d'une charge. Les directives de sécurité relatives à l'application doivent être respectées. L'écrou de sécurité n'est pas un composant de sécurité au sens de la directive des machines.

5.4 Écrous pour vis à billes tourbillonnées

5.4.1 Écrou simple à bride DEB-x

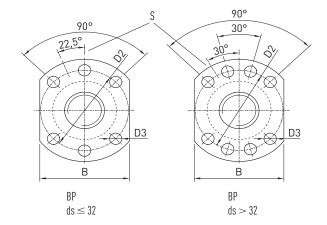



Fig. 5.1 Écrou simple à bride DEB-x avec variantes de déflecteurs N et F

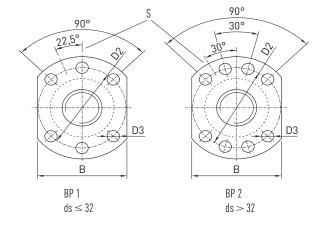


Fig. 5.2 Écrou simple à bride DEB-x avec variantes de déflecteurs K et V

BP Schéma de perçage

Tableau 5.4 Dimensi	ns d	e l'é	crou (varia	ntes	de déf	lecte	urs N	et K	, F et \	V)										
Туре	ds	Р	D	D1	D2	D3	L	L1	L2	L3	L4 ^{1]}	L5 ¹⁾	Trou de lubrifi- cation S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]	N/ K	F/ V
R16-05K4-DEB-x ²⁾	15	5	28	48	38	5,5	47	10	10	5	14	8	M6	40	12,5	13.800	16.400	0,02	0,15	Х	Х
R16-10K3-DEB-x	15	10	28	48	38	5,5	53	10	10	5	14	8	M6	40	12,9	10.800	12.800	0,02	0,17	Х	Х
R16-16K2-DEB-x	15	16	28	48	38	5,5	55	10	10	5	14	8	M6	40	12,9	7.100	8.300	0,02	0,18	χ	
R20-05K4-DEB-x ²⁾	20	5	36	58	47	6,6	48	10	10	5	10,5	5	M6	44	17,3	17.300	23.300	0,02	0,29	χ	Χ
R20-10K3-DEB-x	20	10	36	58	47	6,6	55	10	10	5	10,5	5	M6	44	17,3	13.100	17.400	0,02	0,3	Х	Х
R20-20K2-DEB-x	20	20	36	58	47	6,6	65	10	10	5	12	6	M6	44	17,3	8.800	16.100	0,02	0,32	χ	
R25-05K4-DEB-x ^{2]}	25	5	40	62	51	6,6	53	10	10	5	11,5	6	M6	48	22,3	19.200	29.800	0,02	0,32	χ	Х
R25-10K4-DEB-x	25	10	40	62	51	6,6	70	10	10	5	12	6	M6	48	22,3	19.000	29.700	0,02	0,38	Х	Х
R25-25K2-DEB-x	25	25	40	62	51	6,6	79	10	10	5	12	6	M6	48	22,3	9.700	14.900	0,02	0,41	Х	

¹⁾ Seulement à variantes de déflecteurs K et V

Toutes les dimensions sans unité sont indiquées en mm

 $^{^{2)}}$ Écrous pas à gauche disponibles en stock (seulement à variante de déflecteur N et F)

Vis à billes tourbillonnées

Tableau 5.4 Dimensi	ons d	e l'é	crou (varia	ntes	de défl	.ecte	ırs N	et K	, F et \	/)										
Туре	ds	Р	D	D1	D2	D3	L	L1	L2	L3	L4 ¹⁾	L5 ¹⁾	Trou de lubrifi- cation S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]	N/ K	F/ V
R32-05K5-DEB-x ²	32	5	50	80	65	9	53	12	10	6	12,5	6	M6	62	29,3	35.800	48.700	0,02	0,6	Х	Х
R32-10K5-DEB-x ²⁾	32	10	50	80	65	9	83	14	20	7	11	6	M6	62	28,7	65.600	72.800	0,02	0,68	Х	Х
R32-10K5-DEBH-x	32	10	56	86	71	9	87	14	20	7	12	6	M6	65	26,9	27.800	108.800	0,02	0,75	Х	Х
R32-20K2-DEB-x	32	20	56	86	71	9	72	14	20	7	11	6	M6	65	26,9	28.700	43.000	0,02	0,75	Х	
R40-05K5-DEB-x ²⁾	40	5	63	93	78	9	56	14	10	7	11	5	M8 x 1	70	37,3	58.700	61.700	0,02	0,9	Х	Х
R40-10K4-DEB-x ²⁾	38	10	63	93	78	9	81	14	20	7	11	5	M8 x 1	70	32,9	30.500	105.800	0,02	1,13	Х	Х
R40-20K2-DEB-x	38	20	63	93	78	9	79	14	20	7	12	5	M8 x 1	70	32,9	30.100	52.400	0,03	1,1	Х	
R40-40K2-DEB-x	38	40	63	93	78	9	113	14	20	7	11	5	M8 x 1	70	32,9	31.400	53.300	0,04	1,6	Х	
R50-05K5-DEB-x	50	5	75	110	93	11	56	16	10	8	12	6	M8 x 1	85	47,3	82.000	77.900	0,02	1,2	Х	Х
R50-10K5-DEB-x	50	10	75	110	93	11	93	16	20	8	12	6	M8 x 1	85	44,9	51.200	179.100	0,02	1,8	Х	Х
R50-20K3-DEB-x	50	20	75	110	93	11	101	16	20	8	12	6	M8 x 1	85	44,9	105.700	106.900	0,03	1,95	Х	
R63-10K6-DEB-x	63	10	90	125	108	11	103	18	10	9	13	7	M8 x 1	95	57,9	150.200	271.500	0,04	2,9	Х	Х
R63-20T5-DEB-x	63	20	95	135	115	13,5	169	20	25	10	15	9	M8 x 1	100	55,5	295.900	315.400	0,04	4,1	Х	
R63-20K6-DEBH-x	63	20	125	165	145	13,5	185	25	25	12,5	18	10	M8 x 1	130	53,2	118.000	723.500	0,04	9,5	χ	
R80-10K6-DEB-x	80	10	105	145	125	13,5	105	20	12	10	14	6	M8 x 1	110	74,9	176.400	355.800	0,04	3,0	Х	Х
R80-20K5-DEB-x	80	20	125	165	145	13,5	157	25	25	12,5	17	9	M8 x 1	130	72,5	336.500	437.400	0,05	7,8	χ	
R80-20K6-DEBH-x	78	20	135	175	155	13,5	175	25	25	12,5	19	11	M8 x 1	140	68,2	384.100	931.200	0,05	13,5	Х	
R80-20K7-DEBH-x	78	20	135	175	155	13,5	195	25	25	12,5	19	11	M8 x 1	140	68,2	384.100	1.086.400	0,05	15,0	Х	

 $^{^{1]}}$ Seulement à variantes de déflecteurs K et V

Toutes les dimensions sans unité sont indiquées en mm

- Jeu axial réduit sur demande

 Écrous à déflecteurs de souillures remplaçables

Enveloppe de l'écrou, voir section <u>8.4</u>

Exemple de commande : R 63 10 T6 DEB N 3850 3972 0,052

 $^{^{2)}}$ Écrous pas à gauche disponibles en stock (seulement à variante de déflecteur N et F)

5.4.2 Double écrou à bride DDB-x

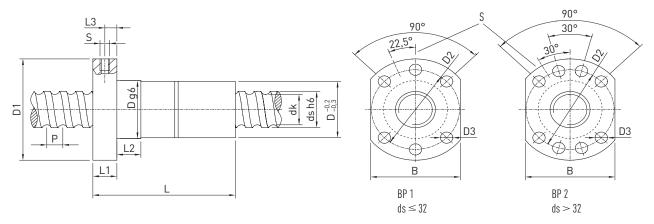


Fig. 5.3 Écrou simple à bride DEB-x avec variantes de déflecteurs N et F

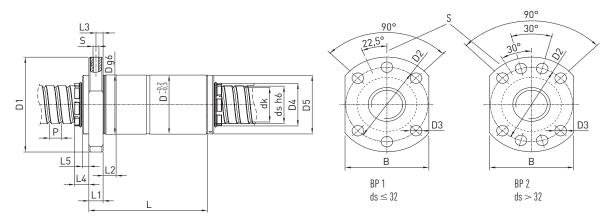


Fig. 5.4 Écrou simple à bride DEB-x avec variantes de déflecteurs K et V

BP Schéma de perçage

Туре	ds	P	D	D1	D2	D3	L	L1	L2	L3	L4 ¹⁾	L5 ¹⁾	Trou de lubrifi- cation S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Masse [kg/pce.]	N/ K	F/ V
R16-05K4-DDB-x	15	5	28	48	38	5,5	75	10	10	5	14	8	M6	40	12,5	13.800	16.400	0,3	Х	Х
R20-05K4-DDB-x	20	5	36	58	47	6,6	87	10	10	5	10,5	5	M6	44	17,3	17.300	23.300	0,5	Χ	Х
R25-05K4-DDB-x	25	5	40	62	51	6,6	96	10	10	5	11,5	6	M6	48	22,3	19.200	29.800	0,68	Χ	Х
R25-10K4-DDB-x	25	10	40	62	51	6,6	130	10	10	5	12	6	M6	48	22,3	19.000	29.700	0,7	Х	Х
R32-05K5-DDB-x	32	5	50	80	65	9,0	96	12	10	6	12,5	6	M6	62	29,3	26.200	48.700	1,2	Х	Х
R32-10K5-DDB-x	32	10	50	80	65	9,0	156	14	20	7	11	6	M6	62	28,7	35.800	72.800	1,3	χ	Х
R32-10K4-DDBH-x	32	10	56	86	71	9,0	144	14	20	7	12	6	M6	62	26,9	53.600	87.000	1,4	Х	Х
R32-20K2-DDB-x	32	20	56	86	71	9,0	134	14	20	7	11	6	M6	65	26,9	27.600	43.000	1,4	Х	
R40-05K5-DDB-x	40	5	63	93	78	9,0	101	14	10	7	11	5	M8 x 1	70	37,3	28.700	61.700	1,7	Х	Х
R40-10K4-DDB-x	38	10	63	93	78	9,0	150	14	20	7	11	5	M8 x 1	70	32,9	58.700	105.800	1,9	Χ	Х
R40-20K2-DDB-x	38	20	63	93	78	9,0	146	14	20	7	12	5	M8 x 1	70	32,9	30.500	52.400	2,0	Χ	
R50-05K5-DDB-x	50	5	75	110	93	11,0	103	16	10	8	12	6	M8 x 1	85	47,3	31.400	77.900	2,1	Х	Х
R50-10K4-DDB-x	50	10	75	110	93	11,0	153	16	20	8	12	6	M8 x 1	85	44,9	67.000	143.300	3,2	Х	Х

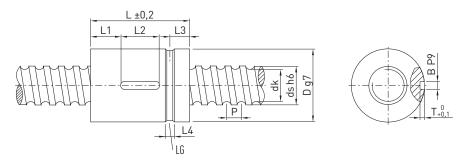
 $^{^{1)}}$ Seulement à variantes de déflecteurs K et V

Toutes les dimensions sans unité sont indiquées en mm

Vis à billes tourbillonnées

Tableau 5.5 Dimensio	ns de	l'écro	u (var	iante	s de d	éflect	eurs N	et K,	F et V)										
Туре	ds	Р	D	D1	D2	D3	L	L1	L2	L3	L4 ¹⁾	L5 ¹⁾	Trou de lubrifi- cation S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Masse [kg/pce.]	N/ K	F/ V
R50-20K3-DDB-x	50	20	75	110	93	11,0	189	16	20	8	12	6	M8 x 1	85	44,9	51.200	106.900	4,8	χ	
R63-10K6-DDB-x	63	10	90	125	108	11,0	193	18	16	9	13	7	M8 x 1	95	57,9	105.700	271.500	6,8	Х	Х
R63-20T4-DDB-x	63	20	95	135	115	13,5	289	20	25	10	15	9	M8 x 1	100	55,5	105.000	250.000	8,0	χ	
R80-10K6-DDB-x	80	10	105	145	125	13,5	195	20	25	10	14	6	M8 x 1	110	74,9	118.000	355.800	6,0	χ	Х
R80-20K4-DDB-x	80	20	125	165	145	13,5	259	25	25	12,5	17	9	M8 x 1	130	72,5	144.300	349.900	14,0	χ	

 $^{^{1)}}$ Seulement à variantes de déflecteurs K et V


Toutes les dimensions sans unité sont indiquées en mm

- Préchargé Exemple de commande : R 63 10 T6 DDB N 3850 3972 0,052

- Écrous avec déflecteurs de souillures
- Écrous à pas à gauche sur demande
- Enveloppe de l'écrou, voir section <u>8.4</u>

5.4.3 Écrou simple cylindrique ZE

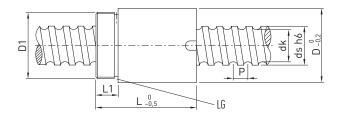
LG Gorge pour l'alimentation en lubrifiant

Tableau 5.6 Dimensio	ns de l'é	écrou													
Туре	ds	Р	D	L	L1	L2	L3	L4	T	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]
R16-05T3-ZE-F ¹⁾	16	5	28	40	12,0	16	9	4	2,4	4	13,5	9.600	12.700	0,02	0,10
R20-05T4-ZE-F ¹⁾	20	5	36	51	15,0	20	10	4	2,4	4	17,5	13.900	21.800	0,02	0,23
R25-05T4-ZE-F ¹⁾	25	5	40	60	20,0	20	12	5	2,4	4	22,5	15.600	27.900	0,02	0,29
R25-10T3-ZE-F	25	10	48	65	22,0	20	15	5	2,4	4	21,0	24.100	36.200	0,02	0,50
R32-05T5-ZE-F ²⁾	32	5	48	60	20,0	20	12	5	2,4	4	29,5	20.700	43.900	0,02	0,38
R32-10T4-ZE-F	32	10	56	80	27,0	25	15	5	2,4	4	27,8	40.900	63.200	0,02	0,74
R32-20T2-ZE-B ²⁾	32	20	56	80	27,0	25	15	5	2,4	4	27,8	20.800	26.800	0,02	0,70
R40-05T5-ZE-F ¹⁾	40	5	56	68	24,0	20	15	6	2,4	4	37,5	22.500	54.600	0,02	0,44
R40-10T4-ZE-F ¹⁾	40	10	62	88	31,0	25	15	6	2,4	4	35,8	46.800	82.600	0,02	0,85
R40-20T2-ZE-B	40	20	62	88	31,0	25	15	6	2,4	4	35,8	24.300	36.400	0,03	0,88
R50-05T5-ZE-F	50	5	68	69	24,0	20	15	6	2,4	4	47,5	24.900	69.800	0,02	0,72
R50-10T4-ZE-F ²⁾	50	10	72	100	37,0	25	17	6	2,4	4	45,8	52.800	106.800	0,02	1,04
R50-20T3-ZE-B	50	20	72	114	44,0	25	17	6	2,4	4	45,8	40.000	76.200	0,03	1,10
R63-10T6-ZE-F	63	10	85	120	44,0	32	17	6	3,5	6	58,8	84.700	210.800	0,04	1,73
R63-20T4-ZE-S	63	20	95	135	52,0	32	17	6	3,5	6	55,4	124.000	250.000	0,04	3,80
R80-10T6-ZE-F	80	10	105	120	44,0	32	17	8	3,5	6	75,8	93.400	269.200	0,04	2,80
R80-20T4-ZE-S	80	20	125	150	52,0	45	17	8	3,5	6	72,4	144.000	322.000	0,05	7,80
R80-20T6-ZEH-S	78	20	130	182	68,5	45	19	8	4,0	8	68,2	286.200	510.000	0,05	11,05

¹⁾ Écrous pas à gauche disponibles à court terme

Toutes les dimensions sans unité sont indiquées en mm

Jeu axial réduit sur demande
 Écrou avec déflecteurs de souillures


Exemple de commande :

 R
 16
 05
 T3
 ZE
 F
 420
 495
 0,052

²⁾ Écrous pas à gauche disponible sur demande

Vis à billes tourbillonnées

5.4.4 Écrou simple cylindrique avec trou fileté SE

LG Gorge pour l'alimentation en lubrifiant

Tableau 5.7 Dimensio	ns de l'é	crou									
Туре	ds	P	D	D1	L	L1	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]
R16-05T3-SE-F ¹⁾	16	5	36	M30 × 1,5	42	12	13,5	9.600	12.700	0,02	0,45
R20-05T4-SE-F ¹⁾	20	5	40	M35 × 1,5	52	12	17,5	13.900	21.800	0,02	0,53
R25-05T4-SE-F ²⁾	25	5	45	M40 × 1,5	60	15	22,5	15.600	27.900	0,02	0,82
R25-10T3-SE-F ²⁾	25	10	48	M45 × 1,5	70	15	21,0	24.100	36.200	0,02	1,00
R32-05T5-SE-F ²⁾	32	5	52	M48 × 1,5	60	15	29,5	20.700	43.900	0,02	1,13
R32-10T3-SE-F ²⁾	32	10	56	M52 × 1,5	80	15	27,8	34.100	56.100	0,02	1,62
R32-20T2-SE-B	32	20	56	M52 × 1,5	80	15	27,8	20.800	26.800	0,02	1,44
R40-05T5-SE-F ¹⁾	40	5	65	M60 × 1,5	68	18	37,5	22.500	54.600	0,02	1,63
R40-10T4-SE-F ¹⁾	40	10	65	M60 × 1,5	88	18	35,8	46.800	82.600	0,02	1,75
R40-20T2-SE-B ²⁾	40	20	65	M60 × 1,5	88	18	35,8	24.300	36.400	0,03	1,75
R50-10T4-SE-F ¹⁾	50	10	80	M75 × 1,5	100	20	45,8	52.800	106.800	0,02	2,96
R50-20T3-SE-B	50	20	80	M75 × 1,5	114	20	45,8	40.000	76.200	0,03	3,15
R63-10T6-SE-F ²⁾	63	10	95	M85 × 2,0	120	20	58,8	84.700	210.800	0,04	4,37
R63-20T3-SE-S	63	20	95	M85 × 2,0	138	20	55,4	96.000	189.000	0,04	4,40

 $^{^{1)}}$ Écrous pas à gauche disponibles à court terme

Toutes les dimensions sans unité sont indiquées en mm

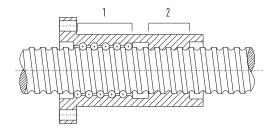
Jeu axial réduit sur demandeÉcrous avec déflecteurs de souillures

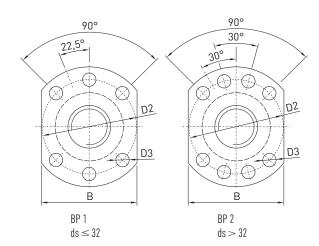
Exemple de commande :

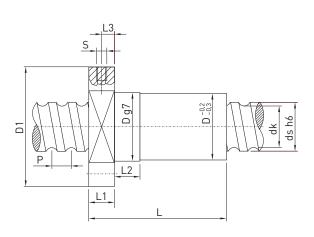
R 20 05 T4 SE F 600 680 0,052

²⁾ Écrous pas à gauche disponible sur demande

5.4.5 Écrou de sécurité SEM


L'écrou de sécurité est composé d'une unité de vis à billes et d'une unité de sécurité. Le principe de fonctionnement de l'écrou de sécurité est similaire à celui d'un écrou de vis à billes normal. Si le jeu axial augmente à cause d'une usure, d'une rupture ou d'une perte de bille, le filetage de l'unité de sécurité entre en contact avec le filetage à billes. L'écrou ne peut donc pas se briser. Le fonctionnement normal de l'unité est garanti avec un jeu axial jusqu'à 0,4 mm.


Domaines d'application :


- Dispositifs de levage
- Dispositifs de serrage
- Plate-formes élévatrices
- Ascenseurs

- 1 Unité de vis à billes
- 2 Unité de sécurité

BP Schéma de perçage

Туре	ds	P	D	D1	D2	D3	L	L1	L2	L3	S	В	dk	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Jeu axial max. [mm]	Masse [kg/pce.]
R32-10T4-SEM-F	32	10	56	86	70	9,0	130	15	16	7,5	M6	66	27,8	40.900	63.200	0,02	1,55
R40-10T4-SEM-F	40	10	63	93	78	9,0	130	15	16	7,5	M8 × 1	70	35,8	46.800	82.500	0,02	1,69
R40-20T2-SEM-B	40	20	63	93	78	9,0	140	15	16	7,5	M8 × 1	70	35,8	24.300	36.400	0,03	1,82
R50-10T5-SEM-F	50	10	75	110	93	11,0	145	16	16	8,0	M8 × 1	85	45,8	63.900	133.300	0,02	2,40
R63-20T4-SEM-S	63	20	95	135	115	13,5	205	20	25	10,0	M8 × 1	100	55,4	124.000	250.000	0,04	5,90
R80-20T5-SEM-S	80	20	125	165	145	13,5	230	25	25	12,5	M8 × 1	130	72,4	174.500	398.000	0,05	12,10

Toutes les dimensions sans unité sont indiquées en mm

Remarque

La seule utilisation d'un écrou de sécurité n'est pas une sécurité suffisante contre la chute incontrôlée d'une charge. Les directives de sécurité relatives à l'application doivent être respectées. L'écrou de sécurité n'est pas un composant de sécurité au sens de la directive des machines.

Vis à billes rectifiées

6. Vis à billes rectifiées

6.1 Propriétés

Parmi les différents procédés de fabrication pour vis à billes, ce sont les vis à billes rectifiées qui offrent la précision la plus élevée. Le processus de rectification après le durcissement permet de fabriquer des vis à billes avec une précision de pas atteignant 3,5 µm/300 mm de longueur de filetage. Elles sont principalement utilisées dans les machines-outils, les machines de ponçage et les machines de mesure. Les vis à billes rectifiées sont toujours fabriquées en fonction des souhaits du client. Cela permet de répondre au mieux à ses exigences en termes de construction d'écrou, de capacités de charge, de méthode de précharge, de type de déflecteur et de traitement final. Prenez contact avec nos collaborateurs à ce sujet.

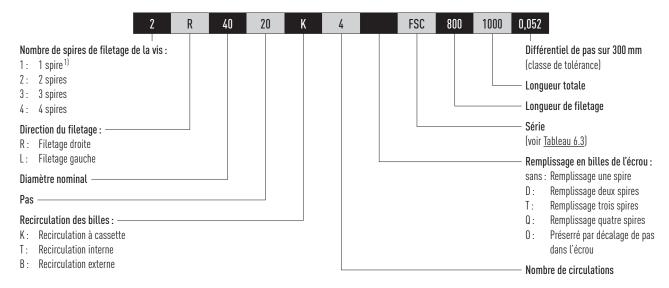
Vous trouverez ci-après des constructions d'écrous, des diamètres nominaux et des pas normalisés typiques. Il ne s'agit ici que d'un extrait de notre gamme de livraison. Nous proposons d'autres dimensions d'écrous sur demande.

6.2 Classes de tolérance

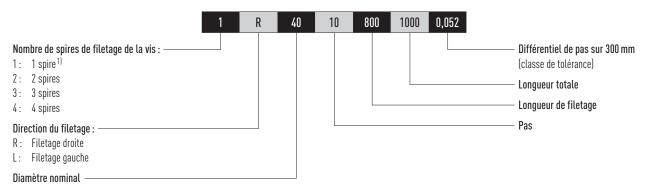
Tableau 6.1 Class	es de tolérance des vi	is à billes rectifiées				
Déviation	Classe de tolér	ance				
	TO	T1	T2	Т3	T4	T5
e _{2p}	0,003	0,004	0,006	0,008	0,008	0,008
e ₃₀₀	0,0035	0,006	0,008	0,012	0,018	0,023

Unité: mm

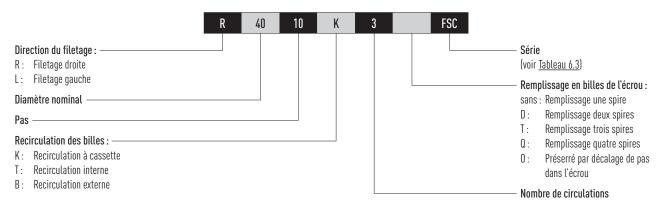
Tableau 6.2 Aperçu des	vis à bille	s rectifiées	disponible	es			•						
Diamètre extérieur	6	8	10	12	16	20	25	32	40	50	63	80	100
Degré de précision	Longueur	s maximal	es des arbı	es de vis à	billes								
TO	110	170	300	400	600	700	1.000	1.200	1.500	1.800	2.000	2.000	2.000
T1	110	170	400	500	720	950	1.300	1.800	2.300	3.100	4.000	4.000	4.000
T2	140	200	500	630	900	1.300	1.700	2.200	2.900	4.000	5.200	6.300	6.300
T3	170	250	500	630	1.000	1.400	1.800	2.500	3.500	4.500	6.000	10.000	10.000
T4	170	250	500	630	1.000	1.400	1.800	2.500	3.500	4.500	6.000	10.000	10.000
T5	170	250	500	630	1.410	1.700	2.400	3.000	3.800	5.000	6.900	10.000	10.000


Unité: mm

Champs verts: veuillez vous adresser à HIWIN.

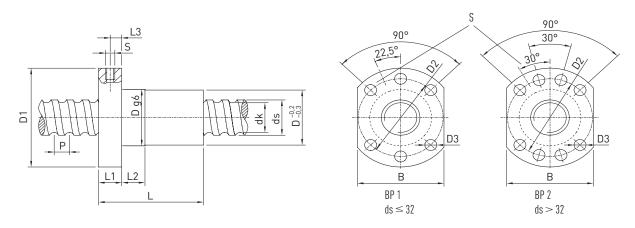


6.3 Code de commande HIWIN pour vis à billes rectifiées


Pour une identification claire de la vis à bille, des informations sur l'arbre de vis à billes et l'écrou de vis à billes sont nécessaires.

Code de commande pour arbre de vis à billes sans écrou de vis à billes

Code de commande pour écrou de vis à billes sans arbre de vis à billes


¹⁾ Standard ; peut être absent pour les vis à une spire

Vis à billes rectifiées

Tableau 6.3 Aperçu séries	
Série	Description
FSC	Écrou simple à bride avec recirculation à cassette
FDC	Double écrou à bride avec recirculation à cassette
FSI	Écrou simple à bride avec recirculation unique interne
FDI	Double écrou à bride avec recirculation unique interne
RSI	Écrou simple cylindrique avec recirculation unique interne
RDI	Double écrou cylindrique avec recirculation unique interne

6.4 Écrous pour vis à billes rectifiées

6.4.1 Écrou simple DIN FSC (DIN 69051 Partie 5) avec recirculation externe

Tableau 6.4 Dime	nsion	s de l'	écrou															
Туре	ds	Р	Ø bille	D min.	D1	D2	D3	Schéma de perçage BP	L	L1	L2	L3	Trou de lubrifi- cation S	В	dk	Rigidité [N/µm]	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]
R14-10K3-FSC	14	10	3,175	28	48	38	5,5	1	46	10	10	5	M5	40	10,72	240	11.300	17.900
R15-10K3-FSC	15	10	3,175	341)	57	45	5,5	1	44	10	10	5	M5	43	12,32	250	11.800	19.300
R15-20K2-FSC	15	20	3,175	34 ¹⁾	57	45	5,5	1	50	10	10	5	M5	43	12,32	150	7.700	12.560
R16-16K2-FSC	16	16	3,175	341)	57	45	5,5	1	47	10	10	5	M5	43	13,12	170	8.300	13.850
R20-05K4-FSC	20	5	3,175	36	58	47	6,6	1	40	10	10	5	M6	44	17,32	420	18.300	36.400
R20-10K3-FSC	20	10	3,175	36	58	47	6,6	1	47	10	10	5	M6	44	17,32	320	13.800	26.600
R20-20K2-FSC	20	20	3,175	36	58	47	6,6	1	57	10	10	5	M6	44	17,32	210	9.300	17.300
R25-05K4-FSC	25	5	3,175	40	62	51	6,6	1	43	10	10	5	M6	48	22,32	490	20.200	46.120
R25-10K3-FSC	25	10	3,175	40	62	51	6,6	1	50	10	10	5	M6	48	22,32	380	15.400	33.700
R25-10K4-FSC	25	10	3,969	45 ¹⁾	65	54	6,6	1	60	10	10	5	M6	51	21,74	560	27.100	56.600
R25-20K3-FSC	25	20	3,175	40	62	51	6,6	1	80	10	10	5	M6	48	22,32	390	15.400	34.360
R25-25K2-FSC	25	25	3,175	40	62	51	6,6	1	69	10	10	5	M6	48	22,32	250	10.300	21.700
R25-20K3-FSC	25	20	3,969	45 ¹⁾	65	54	6,6	1	80	10	10	5	M6	51	21,74	430	20.800	42.900
R32-05K4-FSC	32	5	3,175	48	70	59	6,6	1	38	12	10	6	M6	54	29,32	570	22.500	59.600
R32-10K5-FSC	32	10	3,969	50	80	65	9,0	1	73	12	10	6	M6	62	28,74	850	37.700	94.500
R32-10K5-FSC	32	10	4,763	56 ¹⁾	86	71	9,0	1	79	14	10	7	M6	65	28,13	860	47.200	108.900
R32-10K5-FSC	32	10	6,350	621)	92	77	9,0	1	77	14	10	7	M6	74	26,91	900	69.100	144.800
R32-20K3-FSC	32	20	3,969	50	80	65	9,0	1	87	12	20	6	M6	62	28,74	520	23.300	54.300
R32-20K4-FSC	32	20	4,763	541)	86	71	9,0	1	106	14	20	7	M6	65	28,13	720	39.100	89.140
R32-20K4-FSC	32	20	6,350	62 ¹⁾	92	77	9,0	1	107	14	20	7	M6	74	26,91	700	55.500	108.540

Toutes les dimensions sans unité sont indiquées en mm

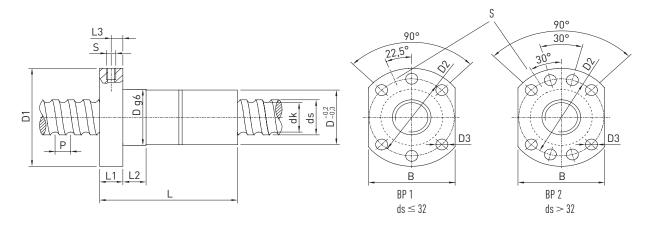
^{1]} Sous-série de DIN 69051 T5 pour pas élevés ou diamètres différents de la norme DIN

Tableau 6.4 Dimensions de l'écrou ds Ø bille D D1 D2 D3Schéma L1 L2 L3 В dk Rigidité Capacité de Capacité Type Trou de lubrificharge dyn. de charge min. de perçage $[N/\mu m]$ BP cation S $C_{dyn}[N]$ stat. $C_0[N]$ R32-32K2-FSC 32 32 3,969 50 80 65 9,0 1 87 12 20 6 M6 62 28,74 340 15.700 35.300 R32-40K2-FSC 80 94 62 32 40 3.969 50 65 9.0 12 20 6 M6 28.74 320 15.200 34.400 R38-10K4-FSC 93 20 7 70 32,91 38 10 6,350 63 78 9,0 2 70 14 $M8 \times 1$ 810 61.900 137.900 R38-20K4-FSC 38 20 6,350 63 93 78 9,0 2 108 14 25 7 $M8 \times 1$ 70 32,91 830 61.100 136.600 38 25 6.350 93 2 127 25 7 M8 × 1 70 32.91 830 60.500 135.600 R38-25K4-FSC 63 78 9.0 14 R38-40K2-FSC 38 40 6,350 63 93 2 103 14 25 7 $M8 \times 1$ 70 32,91 400 31.700 78 9,0 65.600 R40-05K5-FSC 40 5 3,175 63 93 78 9,0 2 45 14 20 7 $M8 \times 1$ 70 37,32 850 30.300 94.900 R40-10K5-FSC 10 6,350 701) 100 85 9,0 83 14 20 7 $M8 \times 1$ 75 34,91 1.060 77.700 184.000 R40-20K4-FSC 20 6,350 $70^{1)}$ 100 85 9,0 2 110 14 20 7 $M8 \times 1$ 75 34,91 62.700 144.400 40 870 75 R40-40K2-FSC 40 6,350 701) 100 85 9,0 2 101 14 25 7 $M8 \times 1$ 34,91 420 32.600 69.400 R50-05K5-FSC 50 5 3,175 70 100 85 11,0 2 45 16 20 8 $M8 \times 1$ 75 47,32 950 33.100 119.400 821) 118 2 92 R50-10K5-FSC 50 10 6.350 100 11.0 80 16 25 8 $M8 \times 1$ 44,91 1.250 86.400 233.000 821) R50-20K4-FSC 50 20 6.350 118 100 11,0 2 106 16 25 8 $M8 \times 1$ 92 44,91 1.040 70.100 183.400 861) 2 R50-20K4-FSC 50 20 9,525 121 103 11,0 120 16 25 8 $M8 \times 1$ 95 42,47 1.130 120.900 274.200 R50-40K3-FSC 50 40 6,350 821) 118 100 11,0 2 145 16 25 8 $M8 \times 1$ 92 44,91 790 53.800 137.500 R63-10K5-FSC 2 20 10 1.440 291.900 63 10 6,350 95 135 115 13,5 84 25 $M8 \times 1$ 100 57,91 94.600 R63-20K5-FSC 63 20 6,350 95 135 115 13,5 2 132 20 25 10 $M8 \times 1$ 100 57,91 1.570 96.200 300.200 R63-20K5-FSC 63 20 9,525 107 147 127 13,5 140 20 25 10 $M8 \times 1$ 112 55,47 1.680 164.500 435.300 R63-40K2-FSC 63 40 6,350 95 135 115 13,5 2 110 20 25 10 $M8 \times 1$ 100 57,91 620 40.500 111.000 R80-10K5-FSC 1101) 150 2 12,5 115 80 10 6,350 130 13,5 80 25 25 $M8 \times 1$ 74,91 1.660 105.600 379.800 1201) 130 R80-20K4-FSC 80 20 9,525 165 145 13,5 2 122 25 25 12,5 $M8 \times 1$ 72,47 1.600 151.900 449.100

Toutes les dimensions sans unité sont indiquées en mm

 Les valeurs de rigidité indiquées sont calculées sans précharge pour une charge de 30 % de la capacité de charge dynamique

Dimensions d'écrou variables sur demande


Autres diamètres et pas sur demande

- Écrous à pas à gauche sur demande

Exemple de commande : R 40 40 K2 FSC 1200 1295 0,012

¹⁾ Sous-série de DIN 69051 T5 pour pas élevés ou diamètres différents de la norme DIN

6.4.2 Double écrou DIN FDC (DIN 69051 Partie 5) avec recirculation externe

Туре	ds	P	Ø bille	D min.	D1	D2	D3	Schéma de perçage BP	L	L1	L2	L3	Trou de lubrifica- tion S	В	dk	Rigidité [N/µm]	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]
R14-10K3-FDC	14	10	3,175	28	48	38	5,5	1	96	10	10	5	M5	40	10,724	310	11.300	17.900
R15-10K3-FDC	15	10	3,175	34 ¹⁾	57	45	5,5	1	92	10	10	5	M5	43	12,324	330	11.800	19.300
R15-20K2-FDC	15	20	3,175	34 ¹⁾	57	45	5,5	1	104	10	10	5	M5	43	12,324	200	7.700	12.560
R16-16K2-FDC	16	16	3,175	34 ¹⁾	57	45	5,5	1	98	10	10	5	M5	43	13,124	230	8.300	13.850
R20-05K4-FDC	20	5	3,175	36	58	47	6,6	1	84	10	10	5	M6	44	17,324	550	18.300	16.420
R20-10K3-FDC	20	10	3,175	36	58	47	6,6	1	98	10	10	5	M6	44	17,324	420	13.800	26.600
R20-20K2-FDC	20	20	3,175	36	58	47	6,6	1	116	10	10	5	M6	44	17,324	270	9.300	17.300
R25-05K4-FDC	20	5	3,175	40	62	51	6,6	1	90	10	10	5	M6	48	22,324	650	20.200	46.120
R25-10K3-FDC	25	10	3,175	40	62	51	6,6	1	104	10	10	5	M6	48	22,324	500	15.400	33.700
R25-10K4-FDC	25	10	3,969	45 ¹⁾	65	54	6,6	1	124	10	10	5	M6	51	21,744	740	27.100	56.600
R25-20K3-FDC	25	20	3,175	40	62	51	6,6	1	164	10	10	5	M6	48	22,324	510	15.400	34.360
R25-20K3-FDC	25	20	3,969	45 ¹⁾	65	54	6,6	1	164	10	10	5	M6	51	21,744	550	20.800	42.900
R25-25K2-FDC	25	25	3,175	40	62	51	6,6	1	142	10	10	5	M6	48	22,324	320	10.300	21.700
R32-05K4-FDC	32	5	3,175	48	70	59	6,6	1	80	12	10	6	M6	54	29,324	770	22.500	59.600
R32-10K5-FDC	32	10	3,969	50	80	65	9,0	1	150	12	10	6	M6	62	28,744	1.130	37.700	94.500
R32-10K5-FDC	32	10	4,763	56 ¹⁾	86	71	9,0	1	162	14	10	7	M6	65	28,132	1.130	47.200	108.900
R32-10K5-FDC	32	10	6,350	62 ¹⁾	92	77	9,0	1	158	14	10	7	M6	74	26,910	1.190	69.100	144.800
R32-20K3-FDC	32	20	3,969	50	80	65	9,0	1	178	12	20	6	M6	62	28,744	680	23.300	54.300
R32-20K4-FDC	32	20	4,763	54 ¹⁾	86	71	9,0	1	216	14	20	7	M6	65	28,132	940	39.100	89.140
R32-20K4-FDC	32	20	6,350	62 ¹⁾	92	77	9,0	1	218	14	20	7	M6	74	26,910	710	55.500	108.540
R32-32K2-FDC	32	32	3,969	50	80	65	9,0	1	178	12	20	6	M6	62	28,744	440	15.700	35.300
R32-40K2-FDC	32	40	3,969	50	80	65	9,0	1	192	12	20	6	M6	62	28,744	420	15.200	34.400
R38-10K4-FDC	38	10	6,350	63	93	78	9,0	2	144	14	20	7	M8 × 1	70	32,910	1.070	61.900	137.900
R38-20K4-FDC	38	20	6,350	63	93	78	9,0	2	220	14	25	7	M8 × 1	70	32,910	1.100	61.100	136.600
R38-25K4-FDC	38	25	6,350	63	93	78	9,0	2	258	14	25	7	M8 × 1	70	32,910	1.090	60.500	135.600
R38-40K2-FDC	38	40	6,350	63	93	78	9,0	2	210	14	25	7	M8 × 1	70	32,910	530	31.700	65.600
R40-05K5-FDC	40	5	3,175	63	93	78	9,0	2	95	14	20	7	M8 × 1	70	37,324	1.140	30.300	94.900
R40-10K5-FDC	40	10	6,350	70 ¹⁾	100	85	9,0	2	171	14	20	7	M8 × 1	75	34,910	1.410	77.700	184.000
R40-20K4-FDC	40	20	6,350	70 ¹⁾	100	85	9,0	2	225	14	20	7	M8 × 1	75	34,910	1.150	62.700	144.400
R40-40K2-FDC	40	40	6,350	70 ¹⁾	100	85	9,0	2	207	14	25	7	M8 × 1	75	34,910	560	32.600	69.400
R50-05K5-FDC	50	5	3,175	70	100	85	11,0	2	95	16	20	8	M8 × 1	75	47,324	1.290	33.100	119.400
R50-10K5-FDC	50	10	6,350	82 ¹⁾	118	100	11,0	2	166	16	25	8	M8 × 1	92	44,910	1.660	86.400	233.000

Toutes les dimensions sans unité sont indiquées en mm

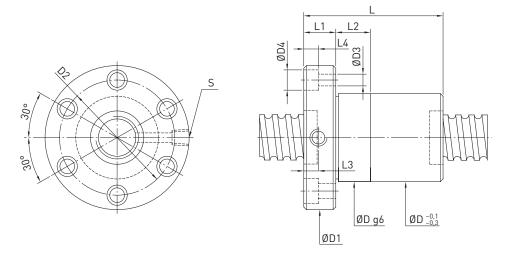
¹⁾ Sous-série de DIN 69051 T5 pour pas élevés ou diamètres d'écrous différents de la norme DIN

Tableau 6.5 Dime	nsions	s de l'	écrou															
Туре	ds	Р	Ø bille	D min.	D1	D2	D3	Schéma de perçage BP	L	L1	L2	L3	Trou de lubrifica- tion S	В	dk	Rigidité [N/µm]	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]
R50-20K4-FDC	50	20	6,350	82 ¹⁾	118	100	11,0	2	218	16	25	8,0	M8 × 1	92	44,910	1.380	70.100	183.400
R50-20K4-FDC	50	20	9,525	86 ¹⁾	121	103	11,0	2	245	16	25	8,0	M8 × 1	95	42,466	1.490	120.900	274.200
R50-40K3-FDC	50	40	6,350	821)	118	100	11,0	2	295	16	25	8,0	M8 × 1	92	44,910	1.040	53.800	137.500
R63-10K5-FDC	63	10	6,350	95	135	115	13,5	2	174	20	25	10,0	M8 × 1	100	57,910	1.920	94.600	291.900
R63-20K5-FDC	63	20	6,350	95	135	115	13,5	2	270	20	25	10,0	M8 × 1	100	57,910	2.080	96.200	300.200
R63-20K5-FDC	63	20	9,525	107	147	127	13,5	2	286	20	25	10,0	M8 × 1	112	55,466	2.220	164.500	435.300
R63-40K2-FDC	63	40	6,350	95	135	115	13,5	2	226	20	25	10,0	M8 × 1	100	57,910	820	40.500	111.000
R80-10K5-FDC	80	10	6,350	110 ¹⁾	150	130	13,5	2	170	25	25	12,5	M8 × 1	115	74,910	2.230	105.600	379.800
R80-20K4-FDC	80	20	9,525	120 ¹⁾	165	145	13,5	2	250	25	25	12,5	M8 × 1	130	72,466	2.120	151.900	449.100

Toutes les dimensions sans unité sont indiquées en mm

 Les valeurs de rigidité indiquées sont calculées pour une précharge de 10 % de la capacité de charge dynamique

- Dimensions d'écrou variables sur demande


Autres diamètres et pas sur demande

- Écrous à pas à gauche sur demande

Exemple de commande : R 40 40 K2 FDC 1200 1295 0,012

¹⁾ Sous-série de DIN 69051 T5 pour pas élevés ou diamètres d'écrous différents de la norme DIN

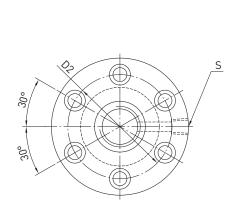
$6.4.3 \ {\rm \acute{E}crou\ simple\ \grave{a}}$ bride FSI avec simple recirculation

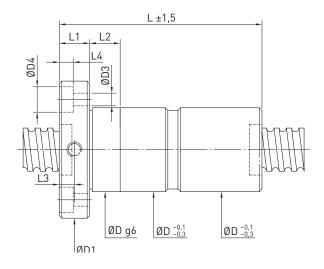
Туре	ds	P	Ø bille	D min.	D1	D2	D3	D4	L	L1	L2	L3	L4	Trou de lubrifi- cation S	dk	Rigidité [N/µm]	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Masse [kg]
R8-2,5T3-FSI	8	2,5	1,500	18	35	27	4,5	_	28	5	-	-	_	_	6,65	80	1.700	2.670	0,04
R16-2T3-FSI	16	2,0	1,500	27	44	34	4,5	8,0	36	10	_	5,0	4,5	M6	14,65	140	2.520	5.930	0,17
R16-5T3-FSI	16	5,0	3,175	30	54	41	5,5	9,5	46	12	12	6,0	5,5	M6	13,32	110	7.310	13.310	0,32
R16-5T4-FSI	16	5,0	3,175	30	54	41	5,5	9,5	52	12	12	6,0	5,5	M6	13,32	120	9.360	17.750	0,34
R20-2T4-FSI	20	2,0	1,500	32	52	40	5,5	9,5	40	10	12	5,0	5,5	M6	18,65	360	3.990	11.120	0,25
R20-2T6-FSI	20	2,0	1,500	32	52	40	5,5	9,5	52	10	12	5,0	5,5	M6	18,65	320	5.180	15.510	0,29
R20-5T3-FSI	20	5,0	3,175	34	57	45	5,5	9,5	46	12	12	6,0	5,5	M6	17,32	200	8.520	17.670	0,35
R20-5T4-FSI	20	5,0	3,175	34	57	45	5,5	9,5	53	12	12	6,0	5,5	M6	17,32	270	10.910	23.560	0,38
R25-2T3-FSI	25	2,0	1,500	36	58	46	5,5	9,5	35	10	12	5,0	5,5	M6	23,65	200	3.090	9.800	0,24
R25-2T4-FSI	25	2,0	1,500	36	58	46	5,5	9,5	40	10	12	5,0	5,5	M6	23,65	270	3.950	13.070	0,26
R25-2T6-FSI	25	2,0	1,500	36	58	46	5,5	9,5	50	10	12	5,0	5,5	M6	23,65	390	5.600	19.600	0,30
R25-5T3-FSI	25	5,0	3,175	40	64	51	5,5	9,5	46	11	10	5,5	5,5	M6	22,32	280	9.770	23.140	0,42
R25-5T4-FSI	25	5,0	3,175	40	64	51	5,5	9,5	51	11	10	5,5	5,5	M6	22,32	370	12.520	30.850	0,44
R25-5T5-FSI	25	5,0	3,175	40	63	51	5,5	9,5	56	11	10	5,5	5,5	M6	22,32	400	15.160	38.560	0,47
R25-5T6-FSI	25	5,0	3,175	40	63	51	5,5	9,5	65	11	10	5,5	5,5	M6	22,32	480	17.730	46.270	0,52
R25-10T3-FSI	25	10,0	4,763	45	69	55	6,6	11,0	65	15	12	7,5	6,5	M6	21,13	250	15.910	32.360	0,80
R25-10T4-FSI	25	10,0	4,763	45	69	55	6,6	11,0	80	15	12	7,5	6,5	M6	21,13	330	20.380	43.150	0,90
R32-5T3-FSI	32	5,0	3,175	44	74	60	6,6	11,0	46	12	12	6,0	6,5	M6	29,32	330	11.170	30.810	0,49
R32-5T4-FSI	32	5,0	3,175	44	74	60	6,6	11,0	53	12	12	6,0	6,5	M6	29,32	420	14.310	41.080	0,53
R32-5T6-FSI	32	5,0	3,175	44	74	60	6,6	11,0	66	12	12	6,0	6,5	M6	29,32	630	20.270	61.620	0,59
R32-10T3-FSI	32	10,0	6,350	51	82	68	6,6	11,0	72	16	12	8,0	6,5	M6	26,91	350	25.390	53.270	1,02
R32-10T4-FSI	32	10,0	6,350	51	82	68	6,6	11,0	83	16	12	8,0	6,5	M6	26,91	480	32.520	71.020	1,11
R40-5T4-FSI	40	5,0	3,175	51	80	66	6,6	11,0	53	16	12	8,0	6,5	M8 × 1	37,32	500	15.990	52.800	0,66
R40-5T6-FSI	40	5,0	3,175	51	80	66	6,6	11,0	66	16	12	8,0	6,5	M8 × 1	37,32	740	22.650	79.190	0,73
R40-10T3-FSI	40	10,0	6,350	60	96	80	9,0	14,0	76	16	15	8,0	8,5	M8 × 1	34,91	400	29.590	70.690	1,37
R40-10T4-FSI	40	10,0	6,350	60	96	80	9,0	14,0	87	16	15	8,0	8,5	M8 × 1	34,91	510	37.890	94.260	1,49
R50-5T4-FSI	50	5,0	3,175	62	96	80	9,0	14,0	57	16	15	8,0	8,5	M8 × 1	47,32	620	17.570	67.450	0,95
R50-5T6-FSI	50	5,0	3,175	62	96	80	9,0	14,0	70	16	15	8,0	8,5	M8 × 1	47,32	910	24.900	101.170	1,04
R50-10T3-FSI	50	10,0	6,350	69	114	92	11,0	17,5	78	18	20	9,0	11,0	M8 × 1	44,91	500	33.970	92.560	1,85
R50-10T4-FSI	50	10,0	6,350	69	114	92	11,0	17,5	89	18	20	9,0	11,0	M8 × 1	44,91	630	43.500	123.410	1,98
R50-10T6-FSI	50	10,0	6,350	69	114	92	11,0	17,5	112	18	20	9,0	11,0	M8 × 1	44,91	940	61.650	185.110	2,26

Toutes les dimensions sans unité sont indiquées en mm

Tableau 6.6 Dim e	ension	s de l'	écrou																
Туре	ds	Р	Ø bille	D min.	D1	D2	D3	D4	L	L1	L2	L3	L4	Trou de lubrifi- cation S	dk	Rigidité [N/µm]	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Masse [kg]
R50-20T4-FSI	50	20	9,525	75	129	105	14,0	20,0	186	28	30	14,0	13,0	M8 × 1	42,47	800	93.270	239.550	5,30
R63-10T4-FSI	63	10	6,350	82	134	110	14,0	20,0	91	20	20	10,0	13,0	M8 × 1	57,91	790	48.600	158.580	2,54
R63-10T6-FSI	63	10	6,350	82	134	110	14,0	20,0	114	20	20	10,0	13,0	M8 × 1	57,91	1.150	68.870	237.860	2,88
R80-10T4-FSI	80	10	6,350	99	152	127	14,0	20,0	91	20	20	10,0	13,0	M8 × 1	74,91	960	55.590	211.180	3,00
R80-10T6-FSI	80	10	6,350	99	152	127	14,0	20,0	114	20	20	10,0	13,0	M8 × 1	74,91	1.400	78.790	316.770	3,42
R80-20T3-FSI	80	20	9,525	108	174	143	18,0	26,0	138	24	25	12,0	17,5	M8 × 1	72,47	950	96.630	316.220	6,30
R80-20T4-FSI	80	20	9,525	108	174	143	18,0	26,0	161	24	25	12,0	17,5	M8 × 1	72,47	1.250	123.750	421.620	6,96
R100-20T4- FSI	100	20	9,525	135	194	163	18,0	26,0	161	24	30	12,0	17,5	M8 × 1	92,47	1.550	135.690	531.610	8,60

Toutes les dimensions sans unité sont indiquées en mm


 Les valeurs de rigidité indiquées sont calculées sans précharge pour une charge de 30 % de la capacité de charge dynamique


- Dimensions d'écrou variables sur demande

Autres diamètres et pas sur demande

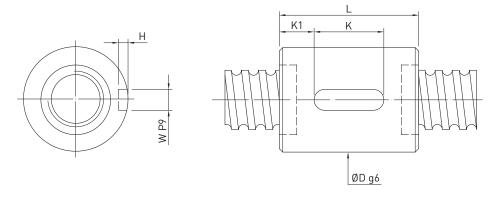
Exemple de commande : R 50 10 T4 FSI 2250 2325 0,023

6.4.4 Double écrou à bride FDI avec simple recirculation

Tableau 6.7 Dime	nsions	de l'éc	rou																
Туре	ds	P	Ø bille	D min.	D1	D2	D3	D4	L	L1	L2	L3	L4	Trou de lubrifica- tion S	dk	Rigidité [N/µm]	Capacité de charge dyn. C _{dyn} [N]	Capacité de charge stat. C ₀ [N]	Masse [kg]
R16-5T3-FDI	16	5	3,175	30	54	41	5,5	9,5	78	12	24	6,0	5,5	M6	13,32	200	7.310	13.310	0,43
R16-5T4-FDI	16	5	3,175	30	54	41	5,5	9,5	90	12	24	6,0	5,5	M6	13,32	230	9.360	17.750	0,48
R20-5T3-FDI	20	5	3,175	34	57	45	5,5	9,5	78	12	24	6,0	5,5	M6	17,32	390	8.520	17.670	0,49
R20-5T4-FDI	20	5	3,175	34	57	45	5,5	9,5	92	12	24	6,0	5,5	M6	17,32	540	10.910	23.560	0,55
R25-5T3-FDI	25	5	3,175	40	64	52	5,5	9,5	78	12	24	5,5	5,5	M6	22,32	550	9.770	23.140	0,59
R25-5T4-FDI	25	5	3,175	40	64	52	5,5	9,5	96	12	24	5,5	5,5	M6	22,32	730	12.520	30.850	0,69
R25-10T3-FDI	25	10	4,763	51	74	60	6,6	11,0	140	15	24	7,5	6,5	M6	21,13	490	16.430	32.650	1,38
R32-5T3-FDI	32	5	3,175	44	74	60	6,6	11,0	78	12	24	6,0	6,5	M6	29,32	640	11.170	30.810	0,65
R32-5T4-FDI	32	5	3,175	44	74	60	6,6	11,0	96	12	24	6,0	6,5	M6	29,32	820	14.310	41.080	0,74
R32-5T6-FDI	32	5	3,175	44	74	60	6,6	11,0	118	12	24	6,0	6,5	M6	29,32	1.210	20.270	61.620	0,85
R32-10T3-FDI	32	10	6,350	51	82	68	6,6	11,0	129	16	24	8,0	6,5	M6	26,91	680	25.390	53.270	1,50
R32-10T4-FDI	32	10	6,350	51	82	68	6,6	11,0	155	16	24	8,0	6,5	M6	26,91	820	32.520	71.020	1,72
R40-5T4-FDI	40	5	3,175	51	80	66	6,6	11,0	96	16	24	8,0	6,5	M8 × 1	37,32	990	15.990	52.800	0,89
R40-5T6-FDI	40	5	3,175	51	80	66	6,6	11,0	122	16	24	8,0	6,5	M8 × 1	37,32	1.460	22.650	79.190	1,03
R40-10T3-FDI	40	10	6,350	60	96	80	9,0	14,0	133	16	30	8,0	8,5	M8 × 1	34,91	760	29.590	70.690	1,99
R40-10T4-FDI	40	10	6,350	60	96	80	9,0	14,0	155	16	30	8,0	8,5	M8 × 1	34,91	1.010	37.890	94.260	2,22
R50-5T4-FDI	50	5	3,175	62	96	80	9,0	14,0	96	16	30	8,0	8,5	M8 × 1	47,32	1.210	17.570	67.450	1,23
R50-5T6-FDI	50	5	3,175	62	96	80	9,0	14,0	122	16	30	8,0	8,5	M8 × 1	47,32	1.770	24.900	101.170	1,42
R50-10T3-FDI	50	10	6,350	69	114	92	11,0	17,5	135	18	40	9,0	11,0	M8 × 1	44,91	950	33.970	92.560	2,53
R50-10T4-FDI	50	10	6,350	69	114	92	11,0	17,5	157	18	40	9,0	11,0	M8 × 1	44,91	1.240	43.500	123.410	2,80
R50-10T6-FDI	50	10	6,350	69	114	92	11,0	17,5	203	18	40	9,0	11,0	M8 × 1	44,91	1.840	61.650	185.110	3,35
R63-10T4-FDI	63	10	6,350	82	134	110	14,0	20,0	159	20	40	10,0	13,0	M8 × 1	57,91	1.580	48.600	158.580	3,53
R63-10T6-FDI	63	10	6,350	82	134	110	14,0	20,0	205	20	40	10,0	13,0	M8 × 1	57,91	2.280	68.870	237.860	4,20
R80-10T4-FDI	80	10	6,350	99	152	127	14,0	20,0	172	20	40	10,0	13,0	M8 × 1	74,91	1.900	55.590	211.180	4,45
R80-10T6-FDI	80	10	6,350	99	152	127	14,0	20,0	214	20	40	10,0	13,0	M8 × 1	74,91	2.770	78.790	316.770	5,20
R80-20T3-FDI	80	20	9,525	108	174	143	18,0	26,0	250	24	50	12,0	17,5	M8 × 1	72,47	1.890	96.630	316.220	9,54
R80-20T4-FDI	80	20	9,525	108	174	143	18,0	26,0	296	24	50	12,0	17,5	M8 × 1	72,47	2.480	123.750	421.620	10,87
R100-20T4-FDI	100	20	9,525	135	194	163	18,0	26,0	296	24	60	12,0	17,5	M8 × 1	92,47	3.000	135.690	531.610	12,69

Toutes les dimensions sans unité sont indiquées en mm

 Les valeurs de rigidité indiquées sont calculées pour une précharge de 10 % de la capacité de charge dynamique


- Dimensions d'écrou variables sur demande

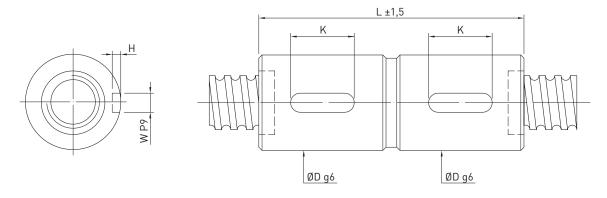
- Autres diamètres et pas sur demande

 Exemple de commande :
 R
 50
 10
 T4
 FDI
 2250
 2325
 0,023

Vis à billes rectifiées

6.4.5 Écrou simple cylindrique RSI avec simple recirculation

Туре	Taille		Ø bille	Circulations	Rigidité K	Capacité de charge	Capacité de charge	Écrou		Rainu	re de cla	vette	
	Ø nominal	Pas			[N/µm]	dyn. C _{dyn} [N]	stat. C ₀ [N]	D	L	K	W	Н	K1
R16-2T4-RSI	16	2	1,500	4	150	1.780	3.950	25	25	20	3	1,8	2,5
R16-5T3-RSI	16	5	3,175	3	110	7.310	13.310	28	40	20	3	1,8	10,0
R16-5T4-RSI	16	5	3,175	4	120	9.360	17.750	28	46	20	3	1,8	13,0
R20-5T3-RSI	20	5	3,175	3	200	8.520	17.670	32	41	20	3	1,8	10,5
R20-5T4-RSI	20	5	3,175	4	270	10.910	23.560	32	48	20	3	1,8	14,0
R25-5T3-RSI	25	5	3,175	3	280	9.770	23.140	37	41	20	4	2,5	10,5
R25-5T4-RSI	25	5	3,175	4	370	12.520	30.850	37	48	20	4	2,5	14,0
R32-5T3-RSI	32	5	3,175	3	330	11.170	30.810	44	41	20	4	2,5	10,5
R32-5T4-RSI	32	5	3,175	4	420	14.310	41.080	44	48	20	4	2,5	14,0
R32-5T6-RSI	32	5	3,175	6	630	20.270	61.620	44	61	25	4	2,5	18,0
R32-10T3-RSI	32	10	6,350	3	350	25.390	53.270	51	68	25	6	3,5	21,5
R32-10T4-RSI	32	10	6,350	4	480	32.520	71.020	51	79	32	6	3,5	23,5
R40-5T4-RSI	40	5	3,175	4	500	15.990	52.800	51	48	20	4	2,5	14,0
R40-5T6-RSI	40	5	3,175	6	740	22.650	79.190	51	61	25	4	2,5	18,0
R40-10T3-RSI	40	10	6,350	3	400	29.590	70.690	60	68	25	6	3,5	21,5
R40-10T4-RSI	40	10	6,350	4	510	37.890	94.260	60	79	32	6	3,5	23,5
R50-5T4-RSI	50	5	3,175	4	620	17.570	67.450	62	48	20	4	2,5	14,0
R50-5T6-RSI	50	5	3,175	6	910	24.900	101.170	62	61	25	4	2,5	18,0
R50-10T3-RSI	50	10	6,350	3	500	33.970	92.560	69	68	32	6	3,5	18,0
R50-10T4-RSI	50	10	6,350	4	630	43.500	123.410	69	79	32	6	3,5	23,5
R50-10T6-RSI	50	10	6,350	6	940	61.650	185.110	69	102	40	6	3,5	31,0
R63-6T4-RSI	63	6	3,969	4	750	26.740	105.420	78	56	25	6	3,5	15,5
R63-6T6-RSI	63	6	3,969	6	1.130	37.040	158.130	78	70	32	6	3,5	19,0
R80-10T4-RSI	80	10	6,350	4	960	55.590	211.180	99	79	32	8	4,0	23,5
R80-10T6-RSI	80	10	6,350	6	1.400	78.790	316.770	99	102	40	8	4,0	31,0
R80-20T3-RSI	80	20	9,525	3	950	96.630	316.220	108	126	50	10	5,0	38,0
R80-20T4-RSI	80	20	9,525	4	1.250	123.750	421.620	108	149	63	10	5,0	43,0
R100-20T4-RSI	100	20	9,525	4	1.550	135.690	531.610	125	149	63	10	5,0	43,0


Toutes les dimensions sans unité sont indiquées en mm

- Les valeurs de rigidité indiquées sont calculées sans précharge pour une charge de 30 % de la capacité de charge dynamique
- Dimensions d'écrou variables sur demande
- Autres diamètres et pas sur demande

Exemple de commande : R 32 10 T4 RSI 1500 1615 0,012

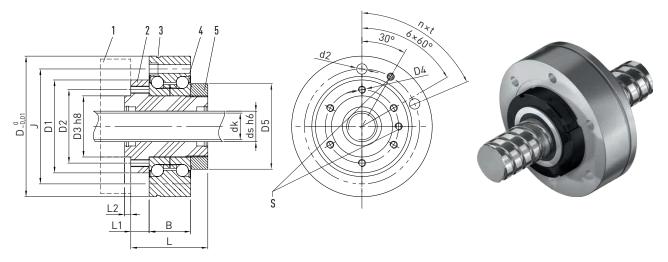
6.4.6 Double écrou cylindrique RDI avec simple recirculation

Tableau 6.9 Dimens	sions de l'écro	ou										
Туре	Taille		Ø bille	Circulations	Rigidité K	Capacité de charge	Capacité de charge	Écrou		Rainu	ıre de cl	avette
	Ø nominal	Pas			[N/µm]	dyn. C _{dyn} [N]	stat. C ₀ [N]	D	L	K	W	Н
R16-5T3-RDI	16	5	3,175	3	200	7.310	13.310	28	72	20	3	1,8
R16-5T4-RDI	16	5	3,175	4	230	9.360	17.750	28	85	20	3	1,8
R20-5T3-RDI	20	5	3,175	3	390	8.520	17.670	32	75	20	3	1,8
R20-5T4-RDI	20	5	3,175	4	540	10.910	23.560	32	85	20	3	1,8
R25-5T3-RDI	25	5	3,175	3	550	9.770	23.140	37	75	20	4	2,5
R25-5T4-RDI	25	5	3,175	4	730	12.520	30.850	37	85	20	4	2,5
R32-5T3-RDI	32	5	3,175	3	640	11.170	30.810	44	75	20	4	2,5
R32-5T4-RDI	32	5	3,175	4	820	14.310	41.080	44	85	20	4	2,5
R32-5T6-RDI	32	5	3,175	6	1.210	20.270	61.620	44	105	25	4	2,5
R32-10T3-RDI	32	10	6,350	3	680	25.390	53.270	51	135	25	6	3,5
R32-10T4-RDI	32	10	6,350	4	820	32.520	71.020	51	155	32	6	3,5
R40-5T4-RDI	40	5	3,175	4	990	15.990	52.800	51	85	20	4	2,5
R40-5T6-RDI	40	5	3,175	6	1.460	22.650	79.190	51	105	25	4	2,5
R40-10T3-RDI	40	10	6,350	3	760	29.590	70.690	60	135	25	6	3,5
R40-10T4-RDI	40	10	6,350	4	1.010	37.890	94.260	60	155	32	6	3,5
R50-5T4-RDI	50	5	3,175	4	1.210	17.570	67.450	62	85	20	4	2,5
R50-5T6-RDI	50	5	3,175	6	1.770	24.900	101.170	62	105	25	4	2,5
R50-10T3-RDI	50	10	6,350	3	950	33.970	92.560	69	135	32	6	3,5
R50-10T4-RDI	50	10	6,350	4	1.240	43.500	123.410	69	155	32	6	3,5
R50-10T6-RDI	50	10	6,350	6	1.840	61.650	185.110	69	197	40	6	3,5
R63-10T4-RDI	63	10	6,350	4	1.580	48.600	158.580	82	160	32	8	4,0
R63-10T6-RDI	63	10	6,350	6	2.280	68.870	237.860	82	202	40	8	4,0
R63-20T4-RDI	63	20	9,525	4	1.890	106.570	312.510	90	260	50	8	4,0
R80-10T4-RDI	80	10	6,350	4	1.900	55.590	211.180	99	160	32	8	4,0
R80-10T6-RDI	80	10	6,350	6	2.770	78.790	316.770	99	202	40	8	4,0
R80-20T3-RDI	80	20	9,525	3	1.890	96.630	316.220	108	245	50	10	5,0
R80-20T4-RDI	80	20	9,525	4	2.480	123.750	421.620	108	289	63	10	5,0
R100-20T4-RDI	100	20	9,525	4	3.000	135.690	531.610	125	289	63	10	5,0

Toutes les dimensions sans unité sont indiquées en mm

 Les valeurs de rigidité indiquées sont calculées pour une précharge de 10 % de la capacité de charge dynamique

- Dimensions d'écrou variables sur demande


Autres diamètres et pas sur demande

Exemple de commande : R 32 10 T4 RDI 1500 1615 0,012

7. Vis à billes pour exigences spéciales

7.1 Unité à écrou entraînable AME

- o Écrous avec roulement à billes contact oblique ZKLF...ZF (version PE distancée)
- o Palier avec écrou à encoches HIR préserré

(1) Poulie crantée, (2) Écrou, (3) Encoche, (4) Palier ZKLF, (5) Écrou à encoches

S Trou de lubrification

Туре	Dim de v	ensio is	ns	Dime	ension	s d'éd	rou						Dime	ension	s de palier	S		Capacité de charge dyn.	Capacité de charge	n max. [tr/min]
	ds	Р	dk	D1	D2	D3	D4	D5	L	L1	L2	М	D	J	n×t	d2	В	C _{dyn} [N]	stat. C ₀ [N]	
R16-05T3-AME	16	5	13,5	50	40	30	M6	47	50	10	3	M6	80	63	6×(60°)	6,5	28	9.600	12.700	4.000
R20-05T4-AME	20	5	17,5	63	52	40	M6	60	60	12	5	M6	100	80	4×(90°)	8,5	34	13.900	21.800	3.300
R25-05T4-AME	25	5	22,5	76	60	50	M6	72	63	15	5	M6	115	94	6×(60°)	8,5	34	15.600	27.900	3.000
R25-10T3-AME	25	10	21,0	76	60	50	M6	72	74	15	5	M6	115	94	6×(60°)	8,5	34	24.100	36.200	3.000
R32-05T5-AME	32	5	29,5	76	62	50	M8	72	70	15	5	M6	115	94	6×(60°)	8,5	34	20.700	43.900	3.000
R32-10T4-AME	32	10	27,8	76	62	50	M8	72	105	15	5	M6	115	94	6×(60°)	8,5	34	40.900	63.200	3.000
R32-20T2-AME	32	20	27,8	76	62	50	M8	72	100	15	5	M6	115	94	6×(60°)	8,5	34	20.800	26.800	3.000
R40-05T5-AME	40	5	37,5	90	70	60	M8	82	76	15	5	M6	145	120	8 × (45°)	Ø 15 × 8U Ø 8,5	45	22.500	54.600	2.400
R40-10T3-AME	40	10	35,8	90	70	60	M8	82	85	15	5	M6	145	120	8 × (45°)	Ø 15 × 8U Ø 8,5	45	37.100	61.900	2.400
R40-20T2-AME	40	20	35,8	90	70	60	M8	82	105	15	5	M6	145	120	8 × (45°)	Ø 15 × 8U Ø 8,5	45	23.800	36.400	2.400
R50-05T5-AME	50	5	47,5	100	84	70	M10	94	78	15	5	M6	155	130	8 × (45°)	Ø 15 × 8U Ø 8,5	45	24.900	69.800	2.200
R50-10T4-AME	50	10	45,8	100	84	70	M10	94	95	15	5	M6	155	130	8 × (45°)	Ø 15 × 8U Ø 8,5	45	52.800	106.800	2.200
R50-20T3-AME	50	20	45,8	100	84	70	M10	94	120	15	5	M6	155	130	8 × (45°)	Ø 15 × 8U Ø 8,5	45	40.000	76.200	2.200
R63-10T6-AME	63	10	58,8	130	110	90	M10	122	120	20	7	M8 × 1	190	165	8 × (45°)	Ø 18 × 10U Ø 10,5	55	84.700	210.800	1.800

Toutes les dimensions sans unité sont indiquées en mm

Exemple de commande :	R	40	20	T2	AME	3800	3900	0,052
-----------------------	---	----	----	----	-----	------	------	-------

7.2 Vis à billes pour fonctionnement avec charges lourdes

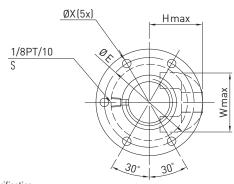
7.2.1 Domaines d'application

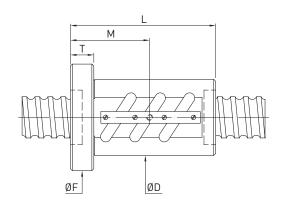
Les vis à billes pour fonctionnement avec charges lourdes sont notamment utilisées dans les machines de moulage par injection, les machines de moulage sous pression, les presses, les moteurs et les robots.

7.2.2 Caractéristiques de puissance

Résistance élevée

- Capacités de charge 2 à 3 fois plus élevées que les versions traditionnelles
- Capacité de charge élevée pour charges axiales, importante accélération
- Déplacement court grâce à une construction spéciale pour la lubrification


Précision


T5 et T7

Vitesses de déplacement rapides et durée de vie élevée

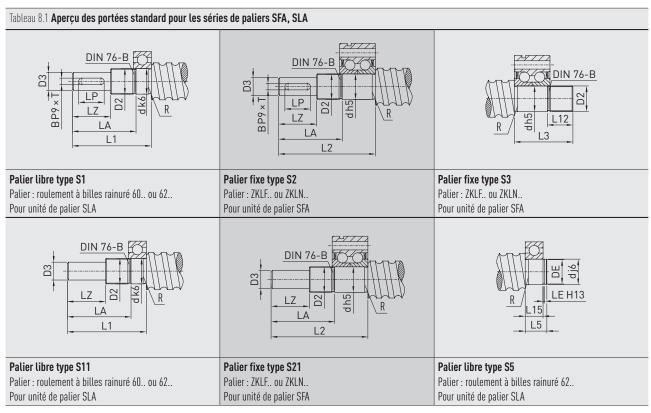
 Systèmes de recirculation des billes renforcés pour une utilisation avec vitesses de rotation élevées et fonctionnement prolongé

Longueur maximale: 2 m

S Trou de lubrification

Tableau 7.2 Dimens	ableau 7.2 Dimensions de l'écrou														
Туре	Ø nominal	Pas	Circulations	Capacité de charge dyn. C _{dyn} [kN]	Capacité de charge stat. C ₀ [kN]	D	L	F	T	E	Х	Н	W		
R45-10B3-FSV	45	10	2,5 × 3	145	488	70	143	104	18	87	9	47,0	57		
R50-12B3-FSV	50	12	2,5 × 3	175	602	77	171	111	22	94	9	52,0	62		
R50-16B3-FSV	50	16	2,5 × 3	330	971	95	223	129	28	112	9	68,0	66		
R55-16B3-FSV	55	16	2,5 × 3	343	1.054	99	223	133	28	116	9	70,0	70		
R63-16B3-FSV	63	16	2,5 × 3	368	1.217	105	223	139	28	122	9	72,5	82		
R80-16B3-FSV	80	16	2,5 × 3	409	1.543	120	227	154	32	137	9	80,0	98		
R80-25B3-FSV	80	25	2,5 × 3	714	2.366	145	338	185	40	165	11	102,0	100		
R100-16B3-FSV	100	16	2,5 × 3	453	1.949	145	227	185	32	165	11	91,0	117		
R100-25B3-FSV	100	25	2,5 × 3	788	2.920	159	338	199	40	179	11	108,5	118		
R120-25B3-FSV	120	25	2,5 × 3	850	3.473	173	338	213	40	193	11	116,0	135		

Toutes les dimensions sans unité sont indiquées en mm


Exemple de commande : R 80 25 B3 FSV 1180 1530 0,023

8. Portées et accessoires

8.1 Portées et configuration de palier

Afin de simplifier la construction, nous vous proposons des traitements finaux et unités de palier standardisés. Pour des applications simples de transport et des charges axiales réduites, nous vous recommandons les séries de paliers « B », « E » et « F ». Les unités de paliers SFA et SLA sont adaptées à des applications de précision plus exigeantes. Pour des applications avec charges lourdes, vous pouvez choisir parmi la série WBK. Lors de la sélection du type de palier adapté, la charge axiale autorisée du palier fixe doit aussi être prise en compte.

Exemple: description d'une portée de type S2 avec diamètre de logement ajusté d = 20 : S2-20

En cas d'utilisation de paliers différents de ceux de l'unité indiquée, contrôlez si la taille de la surface de contact des paliers est suffisante.

Tableau 8.2 Di	mensions de	s porté	es standard _l	our les	séries	de pali	iers SF	A, SLA									
Portées Type	Vis à bille Ø nominal	d	D2	D3	L1	L2	L3	L5	L12	L15	DE	LE	LA	LP	LZ	B×T	Gorge R
S06	12	6	M6 × 0,5	5 j6	31	37	_	8	_	6	5,7 h10	0,80	26	-	16	_	10002475
S10	15, 16	10	M10 × 0,75	8 j6	39	50	30	12	12	9	9,6 h10	1,10	32	14	20	2×1,2	10002475
S12	20	12	M12×1	10 j6	43	58	35	13	12	10	11,5 h11	1,10	35	16	23	3×1,8	10002475
S17	25	17	M17 × 1	14 j6	60	73	43	15	20	12	16,2 h11	1,10	50	20	30	5 × 3	10002475
S20	32	20	M20 × 1	14 j6	62	76	46	17	20	14	19 h12	1,30	50	20	30	5 × 3	10002476
S25	40	25	M25 × 1,5	20 j6	83	96	46	19	20	15	23,9 h12	1,30	71	36	50	6 × 3,5	10002476
S30	40	30	M30 × 1,5	25 j6	95	108	48	20	22	16	28,6 h12	1,60	82	45	60	8 × 4	10002476
S40	50	40	M40 × 1,5	32 k6	119	135	55	22	24	18	37,5 h12	1,85	104	56	80	10 × 5	10002476
S50	63	50	M50 × 1,5	40 k6	142	155	55	25	24	20	47 h12	2,15	124	70	100	12×5	10002476
S60	80	60	M60 × 2	50 k6	155	177	67	28	25	22	57 h12	2,15	135	70	110	14 × 5,5	10002476

Unité : mm

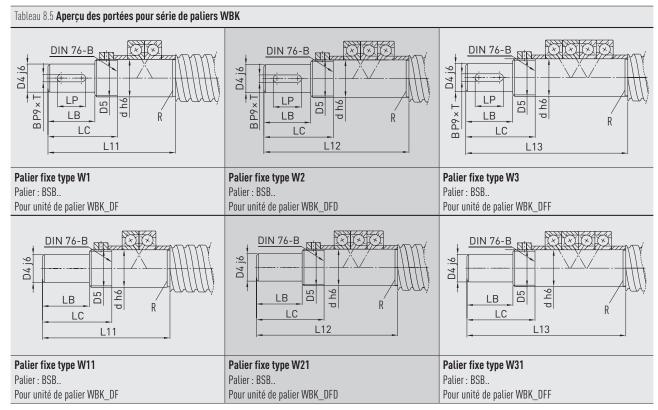
Bien entendu, nous réalisons également l'usinage des portées selon vos plans et souhaits individuels.

Tableau 8.3 Aperçu portées standard pour séries de paliers EK, BK, FK, EF, BF, FF С DIN 76-B **DIN 76-B** D4 j6 BP9×T LΡ D5 LB LC L10 L9 L8 Palier fixe type E8 Palier fixe type E9 Palier libre type E10 Palier: roulement à billes rainuré 60.. ou 62.. Palier: 70.. Palier: 72.. Pour unités de paliers EK, FK Pour unité de palier BK Pour unité de palier EF, BF, FF **DIN 76-B DIN 76-B** D4 j6 D4 j6 LB LB LC LC L9 L8 Palier fixe type E81 Palier fixe type E91 Palier: 70.. Palier : 72.. Pour unités de paliers EK, FK Pour unité de palier BK

Exemple: description d'une portée de type S3 avec diamètre de logement ajusté d = 10 : S3-10

En cas d'utilisation de paliers différents de ceux de l'unité indiquée, contrôlez si la taille de la surface de contact des paliers est suffisante.

Tableau 8.4 Di	Tableau 8.4 Dimensions portées standard pour séries de paliers EK, BK, FK, EF, BF, FF																
Portées Type	Vis à bille Ø nominal	d	D4	D5	D10	L8	L9	L10	L16	L17	DE	LB	LC	LP	B×T	С	Gorge R
E08	12	8	6	M8 × 1	6	41	_	9	6	0,80	5,8	9	19	_	_	5,5	10002475
E10	15, 16	10	8	M10 × 1	8	56	_	10	7	0,90	7,7	20	31	14	2×1,2	5,5	10002475
E12	16 ¹⁾	12	10	M12×1	10	59	_	11	8	1,15	9,6	23	34	16	3×1,8	5,5	10002475
E15	20	15	12	M15 × 1	15	70	_	13	9	1,15	14,3	23	36	16	4 × 2,5	10,0	10002475
E20	25	20	17	M20 × 1	20	92	_	19	14	1,35	19,0	30	47	20	5 × 3,0	11,0	10002476
E25	32	25	20	M25 × 1,5	25	126	115	20	15	1,35	23,9	50	70	36	6 × 3,5	15,0 (9,0) ³⁾	10002476
E30	40	30	25	M30 × 1,5	30	132	132	21	16	1,75	28,6	60	85	45	8 × 4,0	9,0	10002476
E40	50	40	35 ²⁾	M40 × 1,5	40	_	173	23	18	1,95	38,0	80	115	56	10 × 5	15,0	10002476


Unité : mm

Bien entendu, nous réalisons également l'usinage des portées selon vos plans et souhaits individuels.

 $^{^{1)}}$ En fonction du diamètre extérieur effectif de la vis $d_{s\,min}$ = 15,5

²⁾ Tolérance k6

³⁾ Pour BK 25

Exemple : description d'une portée de type W2 avec diamètre de logement ajusté d = 20 : W2-20

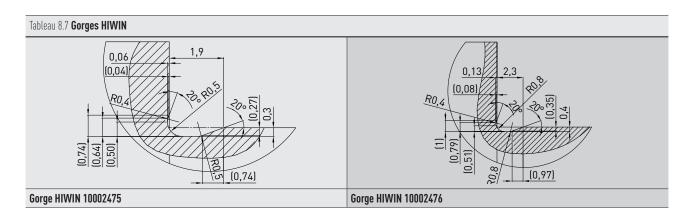

En cas d'utilisation de paliers différents de ceux de l'unité indiquée, contrôlez si la taille de la surface de contact des paliers est suffisante.

Tableau 8.6 D	imensions de	s portées s	tandard pou	r série de p	aliers WBK							
Portées Type	Vis à bille Ø nominal	d	D4	D5	L11	L12	L13	LB	LC	LP	B×T	Gorge R
W15	20	15	12	M15 × 1	104	_	_	23	46	16	4 × 2,5	10002475
W17	25	17	14	M17 × 1	111	_	_	30	53	20	5 × 3,0	10002475
W20	25	20	17	M20 × 1	111	_	_	30	53	20	5 × 3,0	10002476
W25	32	25	20	M25 × 1,5	139	154	_	50	76	36	6 × 3,5	10002476
W30	40	30	25	M30 × 1,5	149	164	_	60	86	45	8 × 4,0	10002476
W35	45	35	30	M35 × 1,5	152	167	182	60	90	45	8 × 4,0	10002476
W40	50	40	35 ¹⁾	M40 × 1,5	172	187	202	80	110	56	10 × 5,0	10002476

Unité : mm

1) Tolérance ké

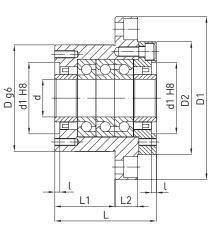
Bien entendu, nous réalisons également l'usinage des portées selon vos plans et souhaits individuels.

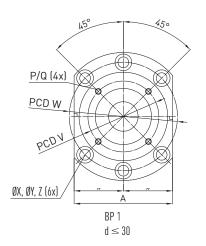
Tableau 8.8 A	perçu type de palier et t	raitement final adapté pour unités de palie	ers SLA, SFA	
Vis à bille	Palier fixe		Palier libre	
Ø nominal	Palier	Traitement final	Palier	Traitement final
12	SFA06	S21-06	SLA06	S5-06/S11-06
15, 16	SFA10	S2-10/S3-10/S21-10	SLA10	S1-10/S5-10/S11-10
20	SFA12	S2-12/S3-12/S21-12	SLA12	S1-12/S5-12/S11-12
25	SFA17	S2-17/S3-17/S21-17	SLA17	S1-17/S5-17/S11-17
32	SFA20	S2-20/S3-20/S21-20	SLA20	S1-20/S5-20/S11-20
40	SFA30	\$2-30/\$3-30/\$21-30	SLA30	S1-30/S5-30/S11-30
50	SFA40	S2-40/S3-40/S21-40	SLA40	S1-40/S5-40/S11-40

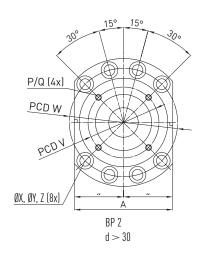
Tableau 8.9 Ap	ableau 8.9 Aperçu type de palier et traitement final adapté pour unités de paliers EK, BK, FK, EF, BF, FF														
Vis à bille	Palier fixe				Palier libre										
Ø nominal	Palier	Traitement final	Palier à bride	Traitement final	Palier	Traitement final	Palier à bride	Traitement final							
12	EK08	E81-08	FK08	E81-08	EF08	E10-08	_	_							
15, 16	EK10	E8-10/E81-10	FK10	E8-10/E81-10	EF10	E10-10	FF10	E10-10							
16 ¹⁾	EK12	E8-12/E81-12	FK12	E8-12/E81-12	EF12	E10-12	FF12	E10-12							
20	EK15	E8-15/E81-15	FK15	E8-15/E81-15	EF15	E10-15	FF15	E10-15							
25	EK20	E8-20/E81-20	FK20	E8-20/E81-20	EF20	E10-20	FF20	E10-20							
32	BK25	E9-25/E91-25	FK25	E8-25/E81-25	BF25	E10-25	FF25	E10-25							
40	BK30	E9-30/E91-30	FK30	E8-30/E81-30	BF30	E10-30	FF30	E10-30							
50	BK40	E9-40/E91-40	_	_	BF40	E10-40	_	_							

 $^{^{1)}}$ En fonction du diamètre extérieur effectif de la vis d $_{\rm s\,min}$ = 15,5

Tableau 8.10	Aperçu type de palier et traitement final adapté pour unité de palier WBK	
Vis à bille Ø nominal	Palier à bride	Traitement final
20	WBK15DF	W1-15/W11-15
25	WBK17DF	W1-17/W11-17
25	WBK20DF	W1-20/W11-20
32	WBK25DF	W1-25/W11-25
32	WBK25DFD	W2-25/W21-25
40	WBK30DF	W1-30/W11-30
40	WBK30DFD	W2-30/W21-30
45	WBK35DF	W1-35/W11-35
45	WBK35DFD	W2-35/W21-35
45	WBK35DFF	W3-35/W31-35
50	WBK40DF	W1-40/W11-40
50	WBK40DFD	W2-40/W21-40
50	WBK40DFF	W3-40/W31-40


Portées et accessoires


8.2 Série de paliers WBK


Avec leur boîtier robuste en acier, les unités de paliers à brides de la série WBK sont spécialement conçues pour une utilisation dans des vis à billes pour charges lourdes. Les unités de palier WBK sont disponibles avec les agencements de paliers différents DF, DFD et DFF en fonction des charges axiales présentes. Les paliers sont lubrifiés à vie

Les traitements finaux adaptés pour le palier fixe WBK sont les types W1, W2 et W3 (section <u>8.1</u>).

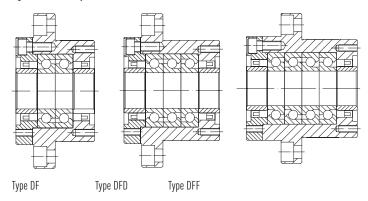
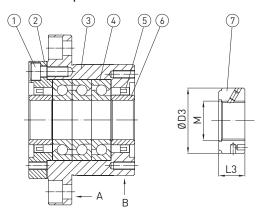

BP Schéma de perçage

Tableau 8.11 Dime	Tableau 8.11 Dimensions de l'unité de palier																	
Туре	Ø nominal vis	d	D	D1	D2	L	L1	L2	A	W	Per- çage X	Frai- sage Y	Profon- deur de fraisage Z	d1	l	V	P	Q
WBK15DF	20	15	70	106	72	60	32	15	80	88	9	14,0	8,5	45	3	58	M5	10
WBK17DF	25	17	70	106	72	60	32	15	80	88	9	14,0	8,5	45	3	58	M5	10
WBK20DF	25	20	70	106	72	60	32	15	80	88	9	14,0	8,5	45	3	58	M5	10
WBK25DF	32	25	85	130	90	66	33	18	100	110	11	17,5	11,0	57	4	70	M6	12
WBK25DFD	32	25	85	130	90	81	48	18	100	110	11	17,5	11,0	57	4	70	M6	12
WBK30DF	40	30	85	130	90	66	33	18	100	110	11	17,5	11,0	57	4	70	M6	12
WBK30DFD	40	30	85	130	90	81	48	18	100	110	11	17,5	11,0	57	4	70	M6	12
WBK35DF	45	35	95	142	102	66	33	18	106	121	11	17,5	11,0	69	4	80	M6	12
WBK35DFD	45	35	95	142	102	81	48	18	106	121	11	17,5	11,0	69	4	80	M6	12
WBK35DFF	45	35	95	142	102	96	48	18	106	121	11	17,5	11,0	69	4	80	M6	12
WBK40DF	50	40	95	142	102	66	33	18	106	121	11	17,5	11,0	69	4	80	M6	12
WBK40DFD	50	40	95	142	102	81	48	18	106	121	11	17,5	11,0	69	4	80	M6	12
WBK40DFF	50	40	95	142	102	96	48	18	106	121	11	17,5	11,0	69	4	80	M6	12


Unité : mm

Agencements de paliers

Construction de palier

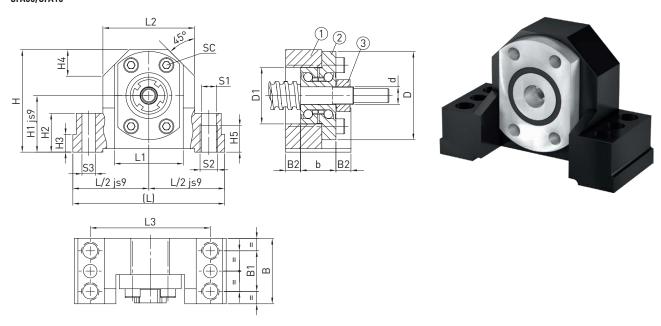
(1) Vis de fixation, (2) Protection palier, (3) Boîtier palier, (4) Palier, (5) Joint, (6) Disque d'écartement, (7) Écrou à encoches

Remarque :

- 1. Pour l'orientation pendant le montage, utilisez les plans de référence A et B.
- 2. Pour garantir une précision élevée, les pièces 1 à 6 ne doivent pas être démontées.

Tableau 8.12 D	ableau 8.12 Données techniques du palier														
Туре	Capacité de charge	Charge axiale	Précharge	Rigidité axiale	Couple de	Écrou à end	oches			Poids	Numéro de				
	dyn. C _{dyn} [kN]	aut. [kN]	[kN]	[N/µm]	démarrage [Nm]	М	D3	L3	Couple de serrage des écrous [Nm]	[kg]	référence				
WBK15DF	21,9	26,6	2,15	750	0,19	M15 × 1	30	14	35	1,9	18-000023				
WBK17DF	21,9	26,6	2,15	750	0,19	M17 × 1	32	16	42	1,9	18-000024				
WBK20DF	21,9	26,6	2,15	750	0,19	M20 × 1	38	16	46	1,9	18-000025				
WBK25DF	28,5	40,5	3,15	1.000	0,29	M25 × 1,5	38	18	87	3,1	18-000026				
WBK25DFD	46,5	81,5	4,30	1.470	0,39	M25 × 1,5	38	18	87	3,4	18-000027				
WBK30DF	29,2	43,0	3,35	1.030	0,30	M30 × 1,5	45	18	105	3,0	18-000028				
WBK30DFD	47,5	86,0	4,50	1.520	0,40	M30 × 1,5	45	18	105	3,3	18-000029				
WBK35DF	31,0	50,0	3,80	1.180	0,34	M35 × 1,5	52	18	340	3,4	18-000030				
WBK35DFD	50,5	100,0	5,20	1.710	0,45	M35 × 1,5	52	18	340	4,3	18-000031				
WBK35DFF	50,5	100,0	7,65	2.350	0,59	M35 × 1,5	52	18	340	5,0	18-000032				
WBK40DF	31,5	52,0	3,90	1.230	0,36	M40 × 1,5	58	20	500	3,6	18-000033				
WBK40DFD	51,5	104,0	5,30	1.810	0,47	M40 × 1,5	58	20	500	4,2	18-000034				
WBK40DFF	51,5	104,0	7,85	2.400	0,61	M40 × 1,5	58	20	500	5,7	18-000035				

Portées et accessoires


8.3 Séries de paliers SFA/SLA

8.3.1 Palier fixe SFA

La hauteur d'axe du palier fixe est harmonisée avec le palier libre SLA (section 8.3.2) et l'enveloppe de l'écrou GFD (section 8.4). Le palier est vissable par le haut (S1) et le bas (S2).

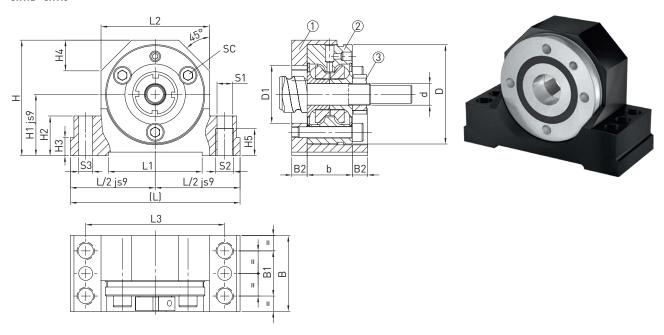
La butée facilite l'alignement de l'unité. Le palier fixe peut être goupillé avec deux chevilles coniques ou chevilles cylindriques. Le traitement final adapté pour le palier fixe est le type S2-xx/S3-xx (section <u>8.1</u>).

SFA06/SFA10

(1) Boîtier de palier en acier, (2) Palier, (3) Écrou à encoches

Tableau 8.13 Dimen	sions de l'unit	é de pali	er													
Type Ø nominal L L/2 L1 L2 L3 H H1 H2 H3 H4 H5 d D D1 b														b		
SFA06	12	62	31	34	38	50	41	22	13	5	11	9	6	30	19	12
SFA10	16	86	43	52	52	68	58	32	22	10	15	15	10	50	32	20

Unité : mm


Tableau 8.14 Dimen	sions de l'unité de	palier						
Туре	Ø nominal vis	В	B1	B2	S1	S2	S3	SC ISO 4762-10.9
SFA06	12	32	16	10,0	5,3	M6	3,7	4 × M3 × 12
SFA10	16	37	23	8,5	8,5	M10	7,7	4 × M5 × 20

Unité : mm

Tableau 8.15 Donné	es techniques d	u palier												
Туре														
				autorisé [1/min]	Туре	Couple de serrage des vis [Nm]	référence							
SFA06	ZKLFA0630.2Z	6.100	4.900	14.000	HIR 06	2	M4	1	18-000109					
SFA10	ZKLFA1050.2RS	8.500	6.900	6.800	HIR 10	6	M4	1	18-000111					

SFA12 - SFA40

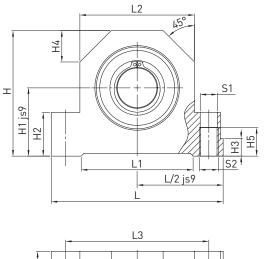
(1) Boîtier de palier en acier, (2) Palier, (3) Écrou à encoches

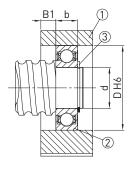
Tableau 8.16 Dime	nsions de l'uni	té de pal	ier													
Туре	Ø nominal vis	L	L/2	L1	L2	L3	Н	H1	H2	Н3	H4	H5	d	D	D1	b
SFA12	20	94	47	52	60	77	64	34	22	10	17	15	12	55	32	25
SFA17	25	108	54	65	66	88	72	39	27	10	19	18	17	62	36	25
SFA20	32	112	56	65	73	92	78	42	27	10	20	18	20	68	42	28
SFA30	40	126	63	82	84	105	92	50	32	13	23	21	30	80	52	28
SFA40	50	146	73	82	104	125	112	60	32	13	30	21	40	100	66	34

Unité : mm

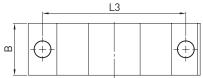
Tableau 8.17 Di	mensions de l'unité d	le palier							
Туре	Ø nominal vis	В	B1	B2	S1	S2	S3	Écrou à encoches	SC ISO 4762-10.9
SFA12	20	42	25	8,5	8,5	M10	7,7	HIR 12	3 × M6 × 35
SFA17	25	46	29	10,5	10,5	M12	9,7	HIR 17	3 × M6 × 35
SFA20	32	49	29	10,5	10,5	M12	9,7	HIR 20 × 1	4 × M6 × 40
SFA30	40	53	32	12,5	12,6	M14	9,7	HIR 30	6 × M6 × 40
SFA40	50	59	34	12,5	12,6	M14	9,7	HIR 40	4 × M8 × 50

Unité : mm


Tableau 8.18 Donn	ées techniques du p	alier							
Туре	Type de palier	C ₀ axial [N]	C _{dyn} axial [N]	Vitesse de rotation	Écrou à en	coches			Numéro de
				autorisé [1/min]	Туре	Couple de serrage des écrous [Nm]	Taille des vis	Couple de serrage des vis [Nm]	référence
SFA12	ZKLF1255.2RS-PE	24.700	18.600	3.800	HIR 12	8	M4	1	18-000113
SFA17	ZKLF1762.2RS-PE	31.000	20.700	3.300	HIR 17	15	M5	3	18-000116
SFA20	ZKLF2068.2RS-PE	47.000	28.500	3.000	HIR 20 × 1	18	M5	3	18-000274
SFA30	ZKLF3080.2RS-PE	64.000	32.000	2.200	HIR 30	32	M6	5	18-000121
SFA40	ZKLF40100.2RS-PE	101.000	47.500	1.800	HIR 40	55	M6	5	18-000123


Portées et accessoires

8.3.2 Série de paliers SLA


La hauteur d'axe du palier libre est harmonisée avec le palier fixe SFA (section <u>8.3.1</u>) et l'enveloppe de l'écrou GFD (section <u>8.4</u>). Le palier est vissable par le haut (S1) et le bas (S2).

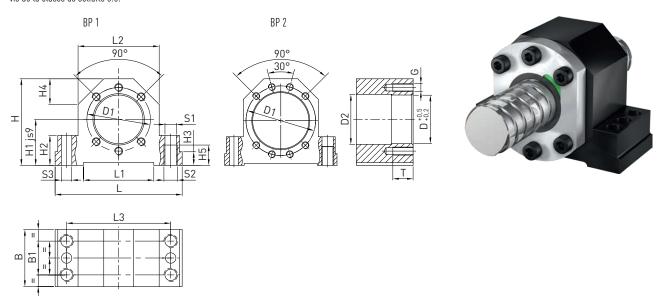
La butée facilite l'alignement de l'unité. Le traitement final adapté pour le palier libre est le type S1-x (section <u>8.1</u>).

(1) Boîtier de palier en acier, (2) Palier, (3) Circlip

Tableau 8.19 Dime	nsions de l'uni	té de palier											
Туре	Ø nominal vis	L	L/2	L1	L2	L3	Н	H1	H2	Н3	H4	H5	b
SLA06	12	62	31	34	38	50	41	22	13	5	11	9	6
SLA10	16	86	43	52	52	68	58	32	22	7	15	15	9
SLA12	20	94	47	52	60	77	64	34	22	10	17	15	10
SLA17	25	108	54	65	66	88	72	39	27	10	19	18	12
SLA20	32	112	56	65	72	92	78	42	27	10	20	18	14
SLA30	40	126	63	82	84	105	92	50	32	13	23	21	16
SLA40	50	146	73	82	104	125	112	60	32	13	30	21	18

Unité : mm

Tableau 8.20 Dime i	nsions de l'unité	de palier								
Туре	Ø nominal vis	В	B1	S1	S2	d	D	Circlip DIN 471	Roulement à billes rainuré DIN 625	Numéro de référence
SLA06	12	15	4,5	5,3	M6	6	19	6 × 0,7	626.2RS	18-000125
SLA10	16	24	7,5	8,4	M10	10	30	10 × 1	6200.2RS	18-000127
SLA12	20	26	8,0	8,4	M10	12	32	12×1	6201.2RS	18-000129
SLA17	25	28	8,0	10,5	M12	17	40	17 × 1	6203.2RS	18-000132
SLA20	32	34	10,0	10,5	M12	20	47	20 × 1,2	6204.2RS	18-000134
SLA30	40	38	11,0	12,6	M14	30	62	30 × 1,5	6206.2RS	18-000137
SLA40	50	44	13,0	12,6	M14	40	80	40 × 1,75	6208.2RS	18-000139


Unité : mm

8.4 Boîtier pour brides-écrous (DIN 69051 Partie 5)

L'enveloppe de l'écrou convient pour le montage de brides-écrous DEB, DDB et FSCDIN. La hauteur d'axe du boîtier est harmonisée avec le palier fixe SFA (section <u>8.3.1</u>) et le palier libre SLA (section <u>8.3.2</u>).

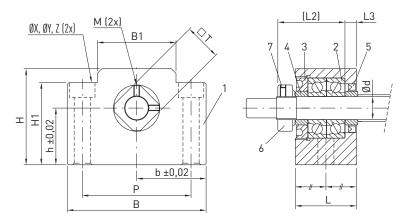
Le boîtier est vissable par le haut (S1) et le bas (S2). Le boîtier est goupillable avec deux goupilles coniques ou chevilles cylindriques. Pour la fixation, il faut prévoir des vis de la classe de solidité 8.8.

BP Schéma de perçage

iadleau 8.21 Di	mensions du boîtier										
Туре	Ø nominal vis	L	L1	L2	L3	Н	H1	H2	Н3	H4	H5
GFD16	16	86	52	52	68	58	32	22	7	15	15
GFD20	20	94	52	60	77	64	34	22	7	17	15
GFD25	25	108	65	66	88	72	39	27	10	19	18
GFD32	32	112	65	72	92	82	42	27	10	19	18
GFD40	40	126	82	84	105	97	50	32	13	23	21
GFD50	50	146	82	104	125	115	60	32	13	30	21

Unité : mm

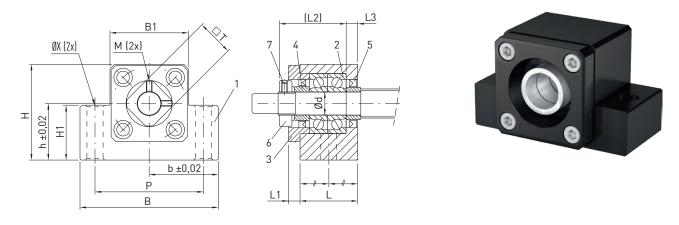
Tableau 8.22 Di	mensions du boîtier												
Туре	Ø nominal vis	D	D1	D2	В	B1	S1	S2	S3	Schéma de perçage	G	T	Numéro de référence
GFD16	16	28	38	29	37	23	8,4	M10	7,7	1	M5	12	1-000016
GFD20	20	36	47	37	42	25	8,4	M10	7,7	1	M6	15	1-000017
GFD25	25	40	51	41	46	29	10,5	M12	9,7	1	M6	15	1-000027
GFD32	32	50	65	51	49	29	10,5	M12	9,7	1	M8	20	1-000028
GFD40	40	63	78	64	53	32	12,6	M14	9,7	2	M8	20	1-000039
GFD50	50	75	93	76	59	34	12,6	M14	9,7	2	M10	25	1-000062


Unité : mm

Portées et accessoires

8.5 Séries de paliers EK/EF

8.5.1 Palier fixe EK


La hauteur d'axe du palier fixe est harmonisée avec le palier libre EF (section $\underline{8.5.2}$). Le traitement final adapté pour le palier fixe EK est le type E8-xx (section $\underline{8.1}$). Les paliers sont lubrifiés à vie.

(1) Boîtier, (2) Palier, (3) Couvercle de retenue, (4) Anneau d'appui, (5) Joint, (6) Écrou de serrage, (7) Vis sans tête

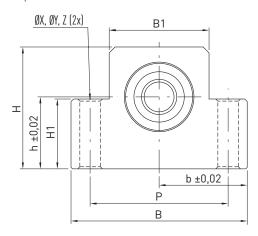
Tableau 8.23 Dimensio	ns de l'unité de	palier															
Туре	Ø nominal vis	d	L	L2	L3	В	Н	b	h	B1	H1	Р	Perçage X	Fraisage Y	Profon- deur de fraisage Z	М	T
EK08	12	8	23	26	4	52	32	26	17	25	26	38	6,6	11	12	M3	14

Unité : mm

(1) Boîtier, (2) Palier, (3) Couvercle de retenue, (4) Anneau d'appui, (5) Joint, (6) Écrou de serrage, (7) Vis sans tête

Tableau 8.24 Dimensio	ns de l'unité de	palier														
Туре	Ø nominal vis	d	L	L1	L2	L3	В	Н	b	h	B1	H1	P	Perçage X	М	T
EK10	16	10	24	6	29,5	6	70	43	35,0	25	36	24	52	9	M3	16
EK12	16 ¹⁾	12	24	6	29,5	6	70	43	35,0	25	36	24	52	9	M4	19
EK15	20	15	25	6	36,0	5	80	49	40,0	30	41	25	60	11	M4	22
EK20	25	20	42	10	50,0	10	95	58	47,5	30	56	25	75	11	M4	30

Unité : mm


 $^{^{1)}}$ En fonction du diamètre extérieur effectif de la vis $\rm d_{s\,min}$ = 15,5

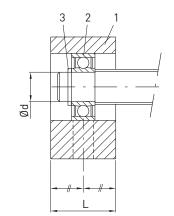


Tableau 8.25 Dor	nnées techniques	du palier							
Туре	Type de	C ₀ axial [N]	C _{dyn} axial [N]	Charge axiale	Écrou à	encoches			Numéro de
	palier			max. autorisée [N]	Туре	Couple de serrage des écrous [Nm]	Taille des vis	Couple de serrage des vis [Nm]	référence
EK08	708	4.800	2.800	1.100	RN8	2,5	M3	0,6	18-000428
EK10	7000A P0	8.800	5.200	2.000	RN10	2,9	M3	0,6	18-000429
EK12	7001A P0	9.400	6.000	2.200	RN12	6,4	M4	1,5	18-000430
EK15	7002A P0	10.000	6.900	2.400	RN15	7,9	M4	1,5	18-000431
EK20	7204B P0	21.600	15.200	6.800	RN20	16,7	M4	1,5	18-000432

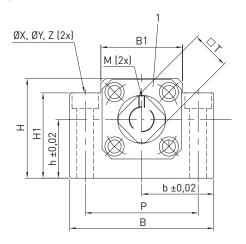
8.5.2 Palier libre EF

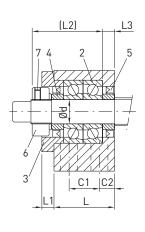
La hauteur d'axe du palier libre est harmonisée avec le palier fixe EK (section $\underline{8.5.1}$). Le traitement final adapté pour le palier libre EF est le type E10-xx (section $\underline{8.1}$). Les paliers sont lubrifiés à vie.

(1) Boîtier, (2) Palier, (3) Circlip

Tableau 8.26 Dimensi	ons de l'unité de	palier														
Туре	Ø nominal vis	d	L	В	Н	b	h	B1	H1	Р	Per- çage X	Frai- sage Y	Profondeur de fraisage Z	Palier	Circlip	Numéro de référence
EF08	12	6	14	52	32	26,0	17	25	26	38	6,6	11	12	606ZZ	S 06	18-000433
EF10	16	8	20	70	43	35,0	25	36	24	52	9,0	_	_	608ZZ	S 08	18-000434
EF12	16 ¹⁾	10	20	70	43	35,0	25	36	24	52	9,0	_	_	6000ZZ	S 10	18-000435
EF15	20	15	20	80	49	40,0	30	41	25	60	9,0	_	_	6002ZZ	S 15	18-000436
EF20	25	20	26	95	58	47,5	30	56	25	75	11,0	_	_	6204ZZ	S 20	18-000437

Unité : mm


 $^{^{11}}$ En fonction du diamètre extérieur effectif de la vis d_{s min} = 15,5


Portées et accessoires

8.6 Séries de paliers BK/BF

8.6.1 Palier fixe BK

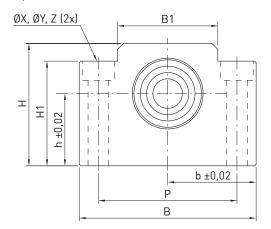
La hauteur d'axe du palier fixe est harmonisée avec le palier libre BF (section $\underline{8.6.2}$). Le traitement final adapté pour le palier fixe BK est le type E9-xx (section $\underline{8.1}$). Les paliers sont lubrifiés à vie.

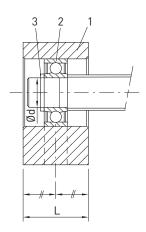
(1) Boîtier, (2) Palier, (3) Couvercle de retenue, (4) Anneau d'appui, (5) Joint, (6) Écrou de serrage, (7) Vis sans tête

Tableau 8.27 Dimensio	ns de l'unité de	palier								
Туре	Ø nominal vis	d	L	L1	L2	L3	В	Н	b	h
BK25	32	25	42	12	54	9	106	80	53	48
BK30	40	30	45	14	61	9	128	89	64	51
BK40	50	40	61	18	76	15	160	110	80	60

Unité : mm

Tableau 8.28 Dimensio	ns de l'unité de	palier									
Туре	Ø nominal vis	B1	H1	Р	C1	C2	Perçage X	Fraisage Y	Profondeur de fraisage Z	М	T
BK25	32	64	70	85	22	10	11	17	11,0	M6	35
BK30	40	76	78	102	23	11	14	20	13,0	M6	40
BK40	50	100	90	130	33	14	18	26	17,5	M6	50

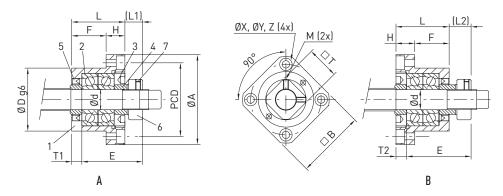

Unité : mm


Tableau 8.29 Données	techniques	du palier							
Туре	Type de	C ₀ axial [N]	C _{dyn} axial [N]		Écrou	à encoches			Numéro de
	palier			max. autorisée [N]	Туре	Couple de serrage des écrous [Nm]	Taille des vis	Couple de serrage des vis [Nm]	référence
BK25	7205A P0	26.300	20.500	7.000	RN25	21	M6	5	18-000439
BK30	7206B P0	33.500	27.000	10.600	RN30	31	M6	5	18-000440
BK40	7208B P0	52.000	46.100	18.000	RN40	71	M6	5	18-000441

8.6.2 Palier libre BF

La hauteur d'axe du palier libre est harmonisée avec le palier fixe BK (section <u>8.6.1</u>). Le traitement final adapté pour le palier libre BF est le type E10-xx (section <u>8.1</u>). Les paliers sont lubrifiés à vie.

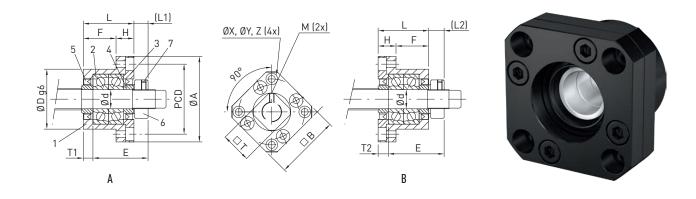
(1) Boîtier, (2) Palier, (3) Circlip


Tableau 8.30 Dimen	sions de l'unité	de pali	er													
Туре	Ø nominal vis	d	L	В	Н	b	h	B1	H1	Р	Per- çage X	Frai- sage Y	Profon- deur de fraisage Z	Palier	Circlip	Numéro de référence
BF25	32	25	30	106	80	53	48	64	70	85	11	17	11,0	6205ZZ	S 25	18-000443
BF30	40	30	32	128	89	64	51	76	78	102	14	20	13,0	6206ZZ	S 30	18-000444
BF40	50	40	37	160	110	80	60	100	90	130	18	26	17,5	6208ZZ	S 40	18-000445

Unité : mm

8.7 Séries de paliers FK/FF

8.7.1 Palier fixe FK


L'unité palier libre correspondante est la série de paliers FF (section 8.7.2). Le traitement final adapté pour le palier fixe FK est le type E8-xx (section 8.1). Les paliers sont lubrifiés à vie.

(1) Boîtier, (2) Palier, (3) Couvercle de retenue, (4) Anneau d'appui, (5) Joint, (6) Écrou de serrage, (7) Vis sans tête

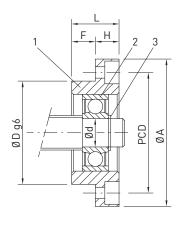
Tableau 8.31 Dime	nsions de l'u	ınité de	palier																
Туре	Ø nominal vis	d	L	Н	F	E	D	A	PCD	В	Varian monta		Varian monta		Per- çage	Frai- sage	Profon- deur de	М	T
											L1	T1	L2	T2	X	Y	fraisage Z		
FK08	12	8	23	9	14	26	28	43	35	35	7	4	8	5	3,4	6,5	4	M3	14

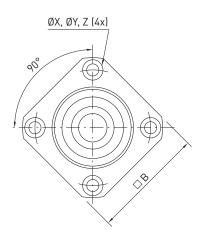
Unité : mm

(1) Boîtier, (2) Palier, (3) Couvercle de retenue, (4) Anneau d'appui, (5) Joint, (6) Écrou de serrage, (7) Vis sans tête

Tableau 8.32 D	imensions de l'u	ınité de	palier																
Туре	Ø nominal vis	d	L	Н	F	E	D	A	PCD	В	Variar monta		Variar monta		Per- çage	Frai- sage	Profon- deur de	М	T
											L1	T1	L2	T2	Х	Υ	fraisage Z		
FK10	16	10	27	10	17	29,5	34	52	42	42	7,5	5	8,5	6	4,5	8,0	5	М3	16
FK12	16 ¹⁾	12	27	10	17	29,5	36	54	44	44	7,5	5	8,5	6	4,5	8,0	5	M4	19
FK15	20	15	32	15	17	36,0	40	63	50	52	10,0	6	12,0	8	5,5	9,5	6	M4	22
FK20	25	20	52	22	30	50,0	57	85	70	68	8,0	10	12,0	14	6,6	11,0	10	M4	30
FK25	32	25	57	27	30	60,0	63	98	80	79	13,0	10	20,0	17	9,0	15,0	13	M6	35
FK30	40	30	62	30	32	61,0	75	117	95	93	11,0	12	17,0	18	11,0	17,5	15	M6	40

Unité : mm


 $^{^{1)}}$ En fonction du diamètre extérieur effectif de la vis d_{s min} = 15,5


Туре	Type de	C ₀ axial [N]	C _{dyn} axial [N]	Charge axiale	Écrou	à encoches			Numéro de
	palier			max. autorisée [N]	Туре	Couple de serrage des écrous [Nm]	Taille des vis	Couple de serrage des vis [Nm]	référence
FK08	708	4.800	2.800	1.000	RN8	2,5	M3	0,6	18-000446
FK10	7000A P0	8.800	5.200	1.900	RN10	2,9	M3	0,6	18-000037
FK12	7001A P0	9.400	6.000	2.200	RN12	6,4	M4	1,5	18-000447
FK15	7002A P0	10.000	6.900	2.400	RN15	7,9	M4	1,5	18-000448
FK20	7204B P0	21.600	15.300	6.800	RN20	16,7	M4	1,5	18-000449
FK25	7205B P0	24.000	19.000	8.100	RN25	20,6	M6	4,9	18-000450
FK30	7206B P0	33.500	27.000	10.600	RN30	31,4	M6	4,9	18-000451

Portées et accessoires

8.7.2 Palier libre FF

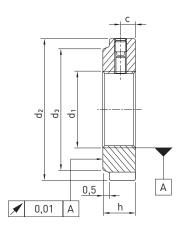
L'unité de palier fixe correspondante est la série de paliers FK (section $\underline{8.7.1}$). Le traitement final adapté pour le palier libre FF est le type E10-xx (section $\underline{8.1}$). Les paliers sont lubrifiés à vie.

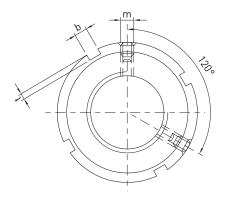
(1) Boîtier, (2) Palier, (3) Circlip

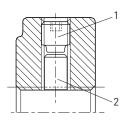
Tableau 8.34 Di	mensions de l'unité	de pali	ier												
Туре	Ø nominal vis	d	L	Н	F	D	A	PCD	В	Per- çage X	Frai- sage Y	Profondeur de fraisage Z	Palier	Circlip	Numéro de référence
FF10	16	8	12	7	5	28	43	35	35	3,4	6,5	4,0	608ZZ	S 08	18-000452
FF12	16 ¹⁾	10	15	7	8	34	52	42	42	4,5	8,0	4,0	6000ZZ	S 10	18-000453
FF15	20	15	17	9	8	40	63	50	52	5,5	9,5	5,5	6002ZZ	S 15	18-000454
FF20	25	20	20	11	9	57	85	70	68	6,6	11,0	6,5	6204ZZ	S 20	18-000455
FF25	32	25	24	14	10	63	98	80	79	9,0	14,0	8,5	6205ZZ	S 25	18-000456
FF30	40	30	27	18	9	75	117	95	93	11,0	17,0	11,0	6206ZZ	S 30	18-000457

Unité : mm

III En fonction du diamètre extérieur effectif de la vis $d_{s\,min}$ = 15.5




8.8 Écrous à encoches HIR - serrage radial

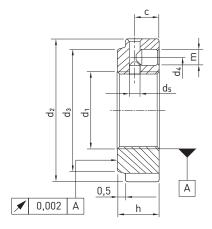

Version

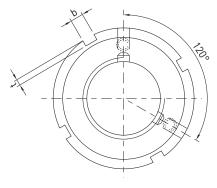
- Filetage droite
- Filetage gauche sur demande
- Le filetage et la surface plane sont fabriqués sans desserrer la pièce
- Qualité de filetage 4H
- À condition d'être employés correctement, les écrous à encoches HIR sont utilisables plusieurs fois

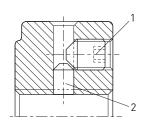
(1) Tige filetée, (2) Bouchon de blocage (profilé)

Туре	Filetage d₁	d_2	h	b	t	d_3	С	m	Numéro de référence
HIR06	M6 × 0,5	16	8	3	2,0	11	4	M4	20-000156
HIR08	M8 × 0,75	16	8	3	2,0	11	4	M4	20-000157
HIR10	M10 × 0,75	18	8	3	2,0	13	4	M4	20-000158
HIR12	M12 × 1	22	8	3	2,0	18	4	M4	20-000160
HIR15	M15 × 1	25	8	3	2,0	21	4	M4	20-000162
HIR17	M17 × 1	28	10	4	2,0	23	5	M5	20-000163
HIR20 × 1	M20 × 1	32	10	4	2,0	27	5	M5	20-000164
HIR20 × 1,5	M20 × 1,5	32	10	4	2,0	27	5	M5	20-000165
HIR25	M25 × 1,5	38	12	5	2,0	33	6	M6	20-000166
HIR30	M30 × 1,5	45	12	5	2,0	40	6	M6	20-000167
HIR35	M35 × 1,5	52	12	5	2,0	47	6	M6	20-000168
HIR40	M40 × 1,5	58	14	6	2,5	52	7	M6	20-000169
HIR45	M45 × 1,5	65	14	6	2,5	59	7	M6	20-000170
HIR50	M50 × 1,5	70	14	6	2,5	64	7	M6	20-000171
HIR55	M55 × 2	75	16	7	3,0	68	8	M6	20-000173
HIR60	M60 × 2	80	16	7	3,0	73	8	M6	20-000174
HIR65	M65 × 2	85	16	7	3,0	78	8	M6	20-000176
HIR70	M70 × 2	92	18	8	3,5	85	9	M8	20-000177
HIR75	M75 × 2	98	18	8	3,5	90	9	M8	20-000179
HIR80	M80 × 2	105	18	8	3,5	95	9	M8	20-000180
HIR85	M85 × 2	110	18	8	3,5	102	9	M8	20-000181
HIR90	M90 × 2	120	20	10	4,0	108	10	M8	20-000192
HIR95	M95 × 2	125	20	10	4,0	113	10	M8	20-000183
HIR100	M100 × 2	130	20	10	4,0	120	10	M8	20-000159

Unité : mm


Portées et accessoires


8.9 Écrous à encoches HIA - serrage axial


Version

- Filetage droite
- Filetage gauche sur demande
- Le filetage et la surface plane sont fabriqués sans desserrer la pièce
- Qualité de filetage 4H
- À condition d'être employés correctement, les écrous à encoches HIA sont utilisables plusieurs fois

(1) Tige filetée, (2) Bouchon de blocage (profilé)

Tableau 8.36 Dime	ensions écrou à end	coches HIA							
Туре	Filetage d ₁	d ₂	h	b	t	d ₃	d ₄	m	Numéro de référence
HIA17	M17 × 1	28	16	4	2,0	23	22,5	M4	20-000128
HIA20 × 1	M20 × 1	32	16	4	2,0	27	26,0	M4	20-000129
HIA20 × 1,5	M20 × 1,5	32	16	4	2,0	27	26,0	M4	20-000127
HIA25	M25 × 1,5	38	18	5	2,0	33	31,5	M5	20-000130
HIA30	M30 × 1,5	45	18	5	2,0	40	37,5	M5	20-000131
HIA35	M35 × 1,5	52	18	5	2,0	47	43,5	M5	20-000132
HIA40	M40 × 1,5	58	20	6	2,5	52	49,0	M6	20-000133
HIA45	M45 × 1,5	65	20	6	2,5	59	55,0	M6	20-000134
HIA50	M50 × 1,5	70	20	6	2,5	64	60,0	M6	20-000135
HIA55	M55 × 2	75	22	7	3,0	68	65,0	M6	20-000136
HIA60	M60 × 2	80	22	7	3,0	73	70,0	M6	20-000137
HIA65	M65 × 2	85	22	7	3,0	78	75,0	M6	20-000138
HIA70	M70 × 2	92	24	8	3,5	85	81,0	M8	20-000139
HIA75	M75 × 2	98	24	8	3,5	90	87,0	M8	20-000140
HIA80	M80 × 2	105	24	8	3,5	95	93,0	M8	20-000141
HIA85	M85 × 2	110	24	8	3,5	102	98,0	M8	20-000142
HIA90	M90 × 2	120	26	10	4,0	108	105,0	M8	20-000143
HIA95	M95 × 2	125	26	10	4,0	113	110,0	M8	20-000144
HIA100	M100 × 2	130	26	10	4,0	120	115,0	M8	20-000124

Unité : mm

HIWIN GmbH

Brücklesbünd 1 77654 Offenburg Deutschland Fon +49 781 93278-0 info@hiwin.de hiwin.de

Tous droits réservés. Toute reproduction, même partielle, est interdite sans notre autorisation.

Remarque

Les caractéristiques techniques énoncées dans le présent catalogue peuvent être modifiées sans préavis.